
 High-Speed Transfer
Server Admin Guide 3.9.6

AIX
 Revision:9f4600 Generated:04/11/2020 18:52

 | Contents | ii

Contents

Introduction... 7

Installation and Upgrades..9
Before Upgrading or Downgrading..9
Installing HST Server... 11

Upgrade Follow up... 12
Configuring the Firewall.. 13
Securing Your SSH Server...14

Changing and Securing the TCP Port..15
Configuring Transfer Server Authentication With the Host-Key Fingerprint....................................... 17

Testing a Locally Initiated Transfer...18
Updating the Product License.. 19
Uninstalling... 19

Get Started with an Aspera Transfer Server.. 20

Get Started as a Transfer Client.. 21

Comparison of Aspera File Delivery and Synchronization Tools......................21

Server Set up Methods...23

Set up Users and Groups...24
Setting Up Transfer Users..24
Setting Up Transfer Groups... 26
Configuration Precedence...28
Setting Up a User's Public Key on the Server...29
Testing a User-Initiated Remote Transfer..30

Configure the Server from the Command Line.. 31
aspera.conf - Authorization Configuration...31
aspera.conf - Transfer Configuration... 33
Controlling Bandwidth Usage with Virtual Links (Command Line).. 48
Global Bandwidth Settings (Command Line)..52
Increasing Transfer Performance by Using an RTT Predictor.. 53
aspera.conf - File System Configuration..54
aspera.conf - Transfer Server Configuration..60
aspera.conf - Filters to Include and Exclude Files.. 62
Server-Side Encryption-at-Rest (EAR).. 64
Reporting Checksums... 66
Server Logging Configuration for Ascp and Ascp 4...69
Out-of-Transfer File Validation..71

 | Contents | iii

Inline File Validation..74
Inline File Validation with URI... 76
Inline File Validation with Lua Script...78

File Pre- and Post-Processing (Prepost)... 81
Setting Up Pre/Post Processing..81
Pre/Post Variables...82
Pre/Post Script Examples... 84

Email Notifications... 85
Setting Up Email Notifications.. 85
Email Notification Examples..87

ascp: Transferring from the Command Line with Ascp.................................... 89
Ascp Command Reference... 89
Ascp General Examples... 104
Ascp File Manipulation Examples... 106
Ascp Transfers with Object Storage and HDFS..108

Transfers with IBM Aspera On Demand and Cloud-Based HST Servers... 108
Writing Custom Metadata for Objects in Object Storage..111

Multi-Session Transfers.. 111
Using Standard I/O as the Source or Destination..113
Using Filters to Include and Exclude Files..116
Symbolic Link Handling.. 122
Creating SSH Keys...124
Reporting Checksums... 125
Client-Side Encryption-at-Rest (EAR)... 128
Comparison of Ascp and Ascp 4 Options... 129
Ascp FAQs..132

ascp4: Transferring from the Command Line with Ascp 4............................. 134
Introduction to Ascp 4..134
Ascp 4 Command Reference..134
Ascp 4 Transfers with Object Storage... 142
Ascp 4 Examples.. 143
Built-in I/O Providers... 143
Data Streaming Command Syntax... 144
Ascp 4 Data Streaming Examples..146
Configuring macOS Server for Multicast Streams.. 147
Troubleshooting Stream Transfers... 148

Watch Folders and the Aspera Watch Service..149
Introduction to Watch Folders and the Aspera Watch Service... 149
Choosing User Accounts to Run Watch Folder Services.. 150
Creating, Managing, and Configuring Services...151
Watch Folders... 154

Getting Started with Watch Folders...154
Creating a Push Watch Folder with aswatchfolderadmin..155
Creating a Pull Watch Folder with aswatchfolderadmin... 160
Watch Folder Service Configuration..164
Watch Folder JSON Configuration File Reference... 165

 | Contents | iv

Managing Watch Folders with aswatchfolderadmin..182
Configuring Linux for Many Watch Folders... 183
Creating a Push Watch Folder with the API... 184
Creating a Pull Watch Folder with the API...189
Managing Watch Folders with the API... 193
Configuring Custom Watch Folder Permissions Policies.. 197
Updating the Docroot or Restriction of a Running Watch Folder Service.. 200

The Aspera Watch Service...201
Starting Aspera Watch Services and Creating Watches.. 201
Watch Service Configuration... 203
Setting Custom Watch Scan Periods..205
Managing Watch Subscriptions..205
Transferring and Deleting Files with the Aspera Watch Service.. 206

Aspera Sync...208
Introduction... 208

Overview... 208
Synchronization and Direction Modes... 209
Aspera Sync FAQ...210

Aspera Sync Set Up... 212
Configuring Aspera Sync Endpoints..212
Viewing Aspera Sync Transfers in the Aspera GUI..215
Symbolic Link Handling.. 216
The Aspera Sync Database...218

Running async...219
Composing an Async Session.. 219
async Command Reference.. 223
Examples of Async Commands and Output.. 236
Include and Exclude Filtering Rules..237
Filtering Examples.. 241
Bidirectional Example.. 242
Synchronizing with AWS S3 Storage..243
Writing Custom Metadata for Objects in Object Storage..244
Aspera Sync with Basic Token Authorization...245

Using the Aspera Watch Service with Aspera Sync... 246
Starting Aspera Watch Services and Creating Watches.. 246
Starting the Aspera Watch Service.. 247
Watch Service Configuration... 248
Aspera Sync with Aspera Watch Service Session Examples.. 250

Aspera Sync Monitoring and Logging...251
asyncadmin Command-Line Options... 251
Logging... 253

Troubleshooting Aspera Sync.. 253
Troubleshooting General Aspera Sync Errors... 253
Troubleshooting Continuous Aspera Sync Errors..255
Resolving Bidirectional Aspera Sync File Conflicts... 256

Appendix... 257
Hardlinks... 257
Creating SSH Keys...258
rsync vs. async Uni-directional Example...258

Configuring for Other Aspera Products.. 260

 | Contents | v

Set up HST Server for Node API... 261
Overview: Aspera Node API... 261
Node API Setup..261
Node Admin Tool...264
Configuring the IBM Aspera NodeD Service..266
Securing the Node Service Behind a Proxy.. 270
Backing up and Restoring the Node User Database Records..270
Backing up and Restoring Access Keys (Tenant Data)...271
Backing up and Restoring a Node Database... 271
Setting up SSL for your Nodes..272
Installing SSL Certificates..274

Authentication and Authorization.. 277
Introduction to Aspera Authentication and Authorization...277
Require Token Authorization: Set from the Command Line.. 278
Transfer Token Creation (Node API).. 279
Transfer Token Generation (astokengen)...281
Access Key Authentication.. 284
Basic Tokens...292
Bearer Tokens... 293

Asconfigurator Reference.. 294
The asconfigurator Utility.. 294
Syntax and Usage... 295
Examples... 297
Reading Output... 298
User, Group and Default Configurations... 299
Trunk (Vlink) Configurations...304
Central Server Configurations.. 304
HTTP Server Configurations..306
Database Configurations...307
Server Configurations... 308
Client Configurations..312

Troubleshooting...313
Clients Can't Establish Connection.. 313
Error: Session Timeout During Ascp Transfers...314
Node API Transfers of Many Small Files Fails.. 315
Logs Overwritten Before Transfer Completes...315
Disabling SELinux..315

Appendix.. 316
Restarting Aspera Services...316
Docroot vs. File Restriction... 316
Aspera Ecosystem Security Best Practices.. 318

Securing the Systems that Run Aspera Software...318
Securing the Aspera Applications.. 321
Securing Content in your Workflow..324

Testing and Optimizing Transfer Performance..326
Create an SSL Certificate (Apache)...328

Enable SSL (Apache)... 329
Log Files... 330
HST Server Web UI (Deprecated)...331

Configuring the Apache Server to Host the HST Server Web UI...331
Configuring your Web UI Settings.. 333
Customize the Appearance of the Web UI.. 335
Testing the Web UI.. 335
Configuring HTTP and HTTPS Fallback.. 337

Product Limitations...340
Technical Support... 340
Legal Notice... 341

 | Introduction | 7

Introduction

Thanks for choosing Aspera and welcome to the world of unbelievably fast and secure data transfer.

The Basics

Aspera high-speed transfers begin when an Aspera client authenticates to an Aspera server and requests a transfer. If
the client user has authorization, then transfer tools are launched on the client and server and the transfer proceeds.

For example, an IBM Aspera Desktop Client user connects to an IBM Aspera High-Speed Transfer Server and
initiates a transfer:

Depending on the user's transfer request, files and folders can be transferred to the server from the client (uploaded)
or transferred to the client from the server (downloaded). The source and destination can be cloud storage, an NFS or
CIFS mount, and IBM Spectrum Scale storage, to name a few.

What is the Server?

The Aspera server receives transfer requests from Aspera clients, determines if the user has permission to access the
server and authorization to the target area of the file system (source or destination with read or write access), and
participates in transfers. The server can be:

• an on-premises installation of HST Server, IBM Aspera High-Speed Transfer Endpoint (which permits one client
connection),

• a HST Server installed as part of IBM Aspera Faspex, or
• an HST Server deployed in object storage as an IBM Aspera On Demand instance, an IBM Aspera on Cloud

transfer service node, or an IBM Aspera Transfer Cluster Manager node.

What is the Client?

The Aspera client is the program that requests a transfer with the Aspera server. Aspera applications that can act as
clients include:

• Desktop Client,
• IBM Aspera Drive,
• IBM Aspera Connect,
• IBM Aspera Command-Line Interface,
• HST Server and HST Endpoint

What is FASP?

At the heart of your Aspera ecosystem are the FASP transfer engines Ascp and Ascp 4. Ascp maximizes data
transport over any network and is particularly suited to large files. It is a powerful command-line tool and also drives
transfers started in the GUI.

Ascp 4 is another command-line transfer tool that is optimized for both large files and transfers of thousands to
millions of small files, handling large amounts of file metadata as part of the high-speed transfer.

Both Ascp and Ascp 4 are installed and enabled with your installation of HST Server, HST Endpoint, and Desktop
Client.

 | Introduction | 8

The Aspera Transfer Server

Your Aspera transfer server is a powerful, customizable hub for your high speed transfer activity. Configuration
settings allow you to control which clients have access for uploading or downloading data, how much bandwidth their
transfers can use, the priority of those transfers, and how data is secured during and after transfer. The transfer queue
can be managed on the fly, enabling you to adjust as priorities change. You can also monitor transfers and receive
email notifications when transfer sessions or individual file transfers start and stop.

The Aspera Server GUI

The Aspera desktop GUI is primarily a client transfer tool, but it also offers a user-friendly interface for managing
users and configuring your server on supported platforms (Windows, Linux, macOS). Security settings, bandwidth
use policies, and file handling rules can all be set in the GUI. Configurations can be applied to all users (globally), to
groups, or to individual users.

HST Server Web Portal

Your HST Server can be made even more accessible to clients by hosting a web-based storage directory. Authorized
clients can browse files by using any modern web browser, and transfer using the free, automatically-installed
Connect.

Asconfigurator: The Aspera Configuration Tool

If you are unfamiliar with the XML formatting required for your Aspera server's configuration file, you can edit your
configuration with confidence by using asconfigurator. These commands ensure that the XML structure is
correctly maintained when you add or change settings.

Tap into the Aspera Ecosystem

If you have a variety of data storage systems and internal and external customers who need access to the content in
that storage, HST Server can be incorporated into a scalable Aspera data transfer ecosystem that meets your needs.
Your Aspera server can be monitored and managed by IBM Aspera Console, and added as a node to IBM Aspera
Faspex, IBM Aspera Shares, IBM Aspera on Cloud, and IBM Aspera Application for Microsoft SharePoint.

The Aspera Client Transfer Tools

Your installation includes the following transfer tools, some of which require an additional license for activation.

The FASP Transfer Engines: ascp and ascp4

These command line tools enable you to run transfers to any server to which you have access, and to customize
the transfers (within the parameters set by the server). They are scriptable, supporting unattended data transfer and
custom pre- and post-transfer file processing.

Hot Folders: Automatic Data Transfer in the GUI

Sending or receiving files can be even easier and faster by using Hot Folders. Available only on Windows, you can
set up a Hot Folder to watch for and automatically transfer any new files that are added to that folder. Automatically
send files to a server as they are added to a folder on your own desktop, or receive files as they are added to a folder
on the server. Transfers use Ascp and are easily managed from the GUI.

Watch Folders: Automatic Content Delivery at Any Scale

Using asperawatchd and Watch Folders creates a powerful, efficient file system monitoring and automatic transfer
tool that can comfortably handle millions of files and "growing" sources. Automatically transfer files as they are
added to a source folder. With a REST API interface, you have full programmatic control for custom, automatic
transfer processing.

Watch Folders offer the same transfer and bandwidth management options as ascp, and can be monitored and
managed through Console. Watch Folders are enabled in your HST Server or HST Endpoint.

IBM Aspera Sync: Directory Synchronization at the Speed of FASP

 | Installation and Upgrades | 9

When everyone needs to see the same files or you need to be sure that every file is replicated, Aspera Sync provides
a high-speed tool to do it. Unique among Aspera's transfer tools, Aspera Sync supports bidirectional synchronization
for optimum collaboration and consistency between computers.

Aspera Sync uses efficient file system monitoring and change detection to minimize redundant data transfer and to
reduce database storage requirements. Aspera Sync offers the same transfer and bandwidth management options as
ascp, and can be monitored and managed through Console.

Aspera Sync is installed with your HST Server and HST Endpoint, but both the client and server require a Aspera
Sync-enabled license.

Installation and Upgrades

Before you install the current release, review the following information about system preparation for upgrades or
downgrades, installation instructions, and product security configuration.

For information about system requirements, see your release notes.

Before Upgrading or Downgrading
When upgrading (or downgrading) HST Server, Aspera recommends the following preparation to ensure a smooth
process, minimal transfer disruption, and peace-of-mind that your original configuration is backed up in case of any
problems.

Upgrading

• The HST Server installer automatically checks for an older version of the product on your system. If an older
version is found, the installer automatically removes it before installing the new version.

• Although the installer performs your upgrade automatically, Aspera highly recommends completing the tasks
below before upgrading. If you do not follow these steps, you risk installation errors or losing your former
configuration settings.

• You cannot upgrade directly between different Aspera transfer products (such as from HST Endpoint or Desktop
Client to HST Server). To upgrade, you need to back up the configuration, uninstall the product, and perform a
fresh install of the new version of the product.

Downgrading

Older installers do not check for newer versions of the application. You must prepare your machine as described
below then uninstall the newer version before continuing with your downgrade.

Newer versions of the Redis database are not compatible with older versions of the application. Your downgrade
process depends on whether a backup of the older Redis DB is available, either as a separate backup file or as part of
your backup of the var directory from the older version.

• With a backup: Follow the steps below to prepare your machine. Uninstall the application (for instructions, see
Uninstalling on page 19). Copy the older Redis DB file into the var directory before installing the older
(downgrade) version.

/opt/aspera/var/

• Without a backup: Follow the steps below to prepare your machine. Uninstall the application (for instructions,
see Uninstalling on page 19) and delete the var and etc directories from your machine. Then do a fresh
installation of the older version. The configuration files in the etc directory may be compatible with older
versions, but not all configurations may be read.

/opt/aspera/var/

/opt/aspera/etc/

Preparing for an Upgrade or Downgrade

 | Installation and Upgrades | 10

1. Verify the current version of HST Server.

The steps that are required to prepare for an upgrade depend on your version. To view the current product and
version, run the following command:

 ascp -A

2. Review product release notes.

Review the release notes for the versions that were released since your current version. In particular, the Breaking
Changes section highlights changes that may require you to adjust your workflow, configuration, or usage.

3. If you were using asperawatchdor Watch Folders, set a docroot or restriction for the user running those services, if
it is not already set.

For more information on setting docroots or restrictions for users, see Updating the Docroot or Restriction of a
Running Watch Folder Service on page 200. Ensure that the pathname being watched (the source_dir of
the Watch Folder) is in the user's docroot or restriction.

4. If you were using asperawatchd or Watch Folders, prepare your Watch Folders for upgrade.

Due to changes in the way watches are managed as of 3.8.0, the entire watch hierarchy is re-transferred after
upgrade unless one of the following actions is taken to prepare your system:

a. Archive files in the source directory before upgrade. This prevents asperawatchfolderd from considering all
files in the source as new files and re-transferring them.

b. Update the configuration of existing Watch Folders to set "overwrite" to NEVER. For instructions, see
Managing Watch Folders with aswatchfolderadmin on page 182 or Managing Watch Folders with the API
on page 193. After upgrade, Watch Folders only transfers files that do not exist at the target. Once the first
drops complete, you can reset "overwrite" to your preferred setting.

5. Stop or allow to complete any FASP transfers that were initiated by the computer that you are upgrading.

FASP transfers cannot proceed during your Aspera product upgrade.

• Stop (and resume after upgrade) or allow to complete any Ascp, Ascp 4, or Aspera Sync transfers in the
command line.

6. If your node is used by IBM Aspera on Cloud, back up the entire Redis database to migrate your AoC data.

Stop asperanoded and create the backup file by running the following commands:

 /etc/rc.d/init.d/asperanoded stop
 asredis -p 31415 BGREWRITEAOF

The backup is stored as appendonly.aof in the following location:

/opt/aspera/var/appendonly.aof

7. Back up configuration and settings files.

These files are found in the etc and var folders.

• /opt/aspera/etc/ (contains server configuration, web configuration, user settings, license info)
• /opt/aspera/var/ (contains Pre- and Post-Processing scripts, HST Serverweb UI (deprecated) settings)

8. Back up the Redis database.

The Redis database is backed up as part of backing up the var directory, but Aspera recommends backing it up
separately as well, particularly if it is stored on a different machine.

 sudo asnodeadmin -b filepathdatabase.backup

9. If you used the HST Server web UI (deprecated), back up its customization files.

Back up the following folder, which you can use as a template to modify the new one after installation:

/opt/aspera/var/webtools/

 | Installation and Upgrades | 11

10. If you modified the daemon startup scripts for Aspera Central and asperanoded (for example, as part of an Aspera
API integration), back up the modified files. These files are overwritten during an upgrade and you will need to
copy your modifications into the new files after upgrading.

Installing HST Server
To install HST Server, log into your computer with root permissions.

Important: If this is a product upgrade, review all prerequisites described in Before Upgrading or Downgrading on
page 9.

1. Download the HST Server installer.

Use the credentials provided to your organization by Aspera to access:

https://downloads.asperasoft.com/en/downloads/4

If you need help determining your firm's access credentials, contact your Aspera account manager.

2. For product upgrades, ensure you have prepared your system to upgrade to a newer version.

Although the installer performs your upgrade automatically, Aspera highly recommends completing the tasks
described in Before Upgrading or Downgrading on page 9. If you do not follow these steps, you risk
installation errors or losing your configuration settings.

3. Run the installer as root:

bash ibm-aspera-hsts-version-release.sh

An example of version is: 3.9.0.119806-aix-7.1-ppc32

4. Installation troubleshooting.

If the installer freezes during installation, another Aspera product might be running on your computer. To stop all
FASP transfer-related applications and connections, see Before Upgrading or Downgrading on page 9.

5. Install the license.

a) Create the Aspera license file and paste your license key string into it.

/opt/aspera/etc/aspera-license

b) Save and close the file.
c) Verify that the license successfully installed:

 ascp -A

To update your product license after the installation, see Updating the Product License on page 19.

6. Edit OpenSSH authentication methods.

a) Open your SSH Server configuration file from /etc/ssh/sshd_config with a text editor.
b) To allow public key authentication, set PubkeyAuthentication to yes. To allow password

authentication, set PasswordAuthentication to yes.

For example,

...
PubkeyAuthentication yes
PasswordAuthentication yes
...

c) Save the file then reload the SSH service.
d) Restart the SSH server to apply new settings.

https://downloads.asperasoft.com/en/downloads/4

 | Installation and Upgrades | 12

Restarting your SSH server does not affect currently connected users.

$ sudo stopsrc -s sshd
$ sudo startsrc -s sshd

e) To further secure your SSH Server, see Securing Your SSH Server on page 14.

7. Secure your server or update your existing configuration.

8. If using, set up the HST Server web UI (deprecated), or verify your web UI settings after an upgrade.

Additional steps are required to configure the web UI, see HST Server Web UI (Deprecated) on page 331.

Upgrade Follow up

1. If you were using asperawatchd or Watch Folders in version 3.6.1 or earlier, manually migrate any services that
are run by a user other than .

The installer does not automatically migrate asperawatchd or asperawatchfolderd for users other than , and you
must manually start their services after upgrade:

a) Confirm that the user has a docroot set in aspera.conf.

To view the user's settings, run:

 asuserdata -u user

If a value is not set for absolute in the docroot option set section, set a docroot by running the
following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

b) Confirm that the user has permissions to write to the log directory.

To view the log directory settings, run:

 asuserdata -a

Look for the values for rund_log_dir and watch_log_dir. If they are set to "AS_NULL", then the
logs write to the default directory (/var/log/aspera.log).

c) Start asperawatchd and asperawatchfolderd for the user by running the following commands:

 asperawatchd --user username
 asperawatchfolderd --user username

2. If you are updating an AoC node, restore the AoC data to the Redis database.

a) Stop asperanoded.

 /etc/rc.d/init.d/asperanoded stop

b) Flush existing data from the Redis database on the new node.

asredis -p 31415 FLUSHALL

c) Load the backup database file into the new node database.

 cat appendonly.aof | asredis --pipe -p 31415

d) Restart asperanoded.

 /etc/rc.d/init.d/asperanoded start

3. If the Redis database is run on another system: Update the KV store keys to the latest format.

 | Installation and Upgrades | 13

The local Redis database schema is automatically updated by the installer, but non-local Redis databases must be
manually updated by running the following command as root:

/opt/aspera/bin/asnodeadmin --db-update

4. If you have a backup of modified daemon start up scripts for asperacentral and asperanoded, copy your
modifications into the new versions of these scripts. Restart the services to activate your changes.

5. For all upgrades: Validate aspera.conf.

The aspera.conf file is not overwritten during an upgrade and your configurations are preserved. However,
the XML formatting, parameters, and acceptable values may have changed between your old version and new
version. Run the following command to check aspera.conf for XML form and valid configuration settings:

 asuserdata -v

Configuring the Firewall
HST Server requires access through specific ports. If you cannot establish the connection, review your local corporate
firewall settings and remove the port restrictions accordingly.

Firewall Configuration for Entitlements

If your transfer server operates with an entitlement and not a license, you must ensure that the Aspera License
Entitlement Engine (ALEE) can communicate with the Aspera metering and billing system. To do so:

• Allow outbound traffic on TCP port 443.
• Ensure access to the following IP addresses (that is, whitelist them):

169.48.106.192/26

169.61.54.112/29

169.60.151.232/31

169.60.129.66/31

169.60.197.0/26

169.61.233.80/29

169.46.4.68/31

169.46.4.70/31

169.48.249.64/26

169.48.226.120/31

169.48.236.50/31

HST Server

Configure your firewall to allow the following ports:

• Inbound TCP/22 (or other TCP port set for SSH connections): The port for SSH connections.

 | Installation and Upgrades | 14

Important: Aspera strongly recommends running the SSH server on a non-default port (allowing inbound SSH
connections on TCP/33001, and disallowing inbound connections on TCP/22) to ensure that your server remains
secure from SSH port scan attacks. For instructions on how to change your SSH port, see Securing Your SSH
Server on page 14.

If you have a legacy customer base that uses TCP/22 then you can allow inbound connections on both ports. See
Securing Your SSH Server on page 14 for instructions.

The firewall on the server side must allow the open TCP port to reach HST Server. No servers are listening on
UDP ports. When a transfer is initiated by an Aspera client, the client opens an SSH session to the SSH server on
the designated TCP port and negotiates the UDP port for the data transfer.

• Inbound UDP/33001: The port for FASP transfers, which use UDP/33001 by default, although the server may
also choose to run FASP transfers on another port.

• Inbound and outbound TCP/8080 and TCP 8443 (or other TCP ports set for HTTP/HTTPS fallback):
The ports for the HTTP fallback. If only HTTP or HTTPS is used, you need to open only that port. For more
information on configuring HTTP fallback ports, see Configuring HTTP and HTTPS Fallback on page 337.

• Inbound TCP/80 and TCP/443: The ports for the HST Server web UI (deprecated), for HTTP and/or HTTPS
web access. If only HTTP or HTTPS is used, you only need to open that port.

• Local firewall: If you have a local firewall on your server (like iptables), verify that it is not blocking your
SSH and FASP transfer ports (such as TCP/UDP 33001). If you are using Vlinks, you will need to allow the Vlink
UDP port (55001, by default) for multicast traffic. For additional information on setting up Vlinks, see Controlling
Bandwidth Usage with Virtual Links (Command Line) on page 48.

Remote Client Machines

Typically, consumer and business firewalls allow direct outbound connections from client computers on TCP and
UDP, and no configuration is required for Aspera transfers. In the special case of firewalls blocking direct outbound
connections, usually with proxy servers for web browsing, the following ports must be allowed:

• Outbound TCP/33001: Allow outbound connections from the Aspera client on the TCP port (TCP/33001 by
default, when connecting to a Windows server, or on another non-default port for other server operating systems).

• Outbound UDP/33001 (or a range, if required): Allow outbound connections from the Aspera client on the
FASP UDP port (33001, by default).

• Local firewall: If you have a local firewall on the client (such as iptables), verify that it is not blocking your
SSH and FASP transfer ports (such as TCP/UDP 33001).

Important: Multiple concurrent clients cannot connect to a Windows Aspera server on the same UDP port.
Similarly, multiple concurrent clients that are utilizing two or more user accounts cannot connect to a macOS,
FreeBSD, or Isilon Aspera server on the same UDP port. If connecting to these servers, you will need to allow a range
of outbound connections from the Aspera client (that have been opened incrementally on the server side, starting at
UDP/33001). For example, you may need to allow outbound connections on UDP/33001 through UDP/33010 if 10
concurrent connections are allowed by the server.

Securing Your SSH Server
Keeping your data secure is critically important. Aspera strongly recommends taking additional steps to set up and
configure your SSH server to protect against common attacks.

These steps include the following:

• Changing the TCP port.
• Configuring transfer server authentication.

Aspera also recommends restricting user access to the server, as described in the user setup instructions later in this
guide.

 | Installation and Upgrades | 15

Changing and Securing the TCP Port
SSH servers, including the OpenSSH suite included with your product, listen for incoming connections on TCP Port
22 by default. As such, Port 22 is subject to numerous unauthorized login attempts by hackers who attempt to access
unsecured servers. An effective deterrent is to close Port 22 and run the service on a seemingly random port above
1024 (and up to 65535).

To standardize the port for use in Aspera transfers, Aspera recommends setting the TCP port to 33001 and closing
TCP/22.

Prerequisites:

• Before changing the default port for SSH connections, verify with your network administrators that TCP/33001 is
open.

• Before closing port TCP/22, notify users of the change.

Notifying Users - How to Specify TCP/33001

Aspera recognizes that disabling the default SSH connection port (TCP/22) might affect your clients. When you
change the port, ensure that you advise your users on how to configure the new port number, from the GUI (if
available and used) and from the command line.

• GUI: To change the SSH port in Desktop Client, click Connections and select the entry for the server whose
ports are changing. On the Connection tab, click Show Advanced Settings and enter the SSH port number in the
SSH Port (TCP) field.

• Command line: Clients running FASP transfers from the command line can specify the port by using the -P
33001 option.

Changing to TCP/33001

The following steps require root privileges.

1. Open the SSH configuration file.

/etc/ssh/sshd_config

2. Add the TCP/33001 SSH port and close TCP/22.

Comment out the line for "Port 22" and add a line for "Port 33001":

#Port 22
Port 33001

Note: If you are using the HST Server web UI (deprecated), you must also update the SshPort value in the
<WEB...> section of aspera.conf. For details, see Configuring your Web UI Settings on page 333.

Once this setting takes effect:

• Aspera clients must set the transfer port to 33001 in the GUI or specify -P 33001 for command line
transfers.

• Server administrators should use ssh -p 33001 to access the server through SSH.

3. Disable non-admin SSH tunneling.

These instructions require that OpenSSH 4.4 or newer is installed on your system in order to use the Match
directive. Match allows you to selectively override certain configuration options when specific criteria (based on
user, group, hostname, or address) are met.

Open your SSH Server configuration file, sshd_config, with a text editor. Add the following lines to the end
of the file (or modify them if they already exist):

AllowTcpForwarding no
Match Group root
AllowTcpForwarding yes

 | Installation and Upgrades | 16

Depending on your sshd_config file, you might have additional instances of AllowTCPForwarding that
are set to the default Yes. Review your sshd_config file for other instances and disable if necessary.

Disabling TCP forwarding does not improve security unless users are also denied shell access, because they can
still install their own forwarders. Review your user and file permissions, and see Setting Up Transfer Users on
page 24 for instructions on modifying user shell access.

4. Update authentication methods

Public key authentication can prevent brute-force SSH attacks if all password-based authentication methods are
disabled. For this reason, Aspera recommends disabling password authentication in the sshd_config file and
enabling private/public key authentication.

Note: Before proceeding, configure at least one non-root, non-transfer user with a public key to use to manage
the server. This is because in other server-securing steps, root login is disabled and Aspera recommends that
transfer users are restricted to aspshell, which does not allow interactive login. This user and public key is what
you use to access and manage the server as an administrator.

To configure authentication methods, add or uncomment PubkeyAuthentication yes and comment out
PasswordAuthentication yes.

PubkeyAuthentication yes
#PasswordAuthentication yes
PasswordAuthentication no

Note: If you choose to leave password authentication enabled, be sure to advise account creators to use strong
passwords and set PermitEmptyPasswords to "no".

PermitEmptyPasswords no

5. Disable root login.

CAUTION: This step disables root access. Make sure that you have at least one user account with sudo
privileges before continuing, otherwise you may not have access to administer your server.

By default, OpenSSH allows root logins. However, disabling root access helps maintain a more secure server.
Aspera recommends disabling root access by commenting out PermitRootLogin yes in the sshd_config
file and adding PermitRootLogin No.

#PermitRootLogin yes
PermitRootLogin no

Administrators can use the su command when root privileges are necessary.

6. Restart the SSH server to apply new settings.

Restarting your SSH server does not affect currently connected users.

$ sudo stopsrc -s sshd
$ sudo startsrc -s sshd

7. Review your logs periodically for attacks.

You can view the state of active TCP connections by running the netstat command:

 netstat -an

Typical output shows multiple, different IP addresses connected to specific ports:

 TCP 10.0.111.200:53402 72.21.81.109:80 CLOSE_WAIT
 TCP 10.0.111.200:53865 173.194.202.188:5228 ESTABLISHED
 TCP 10.0.111.200:53876 10.0.9.16:445 TIME_WAIT
 TCP 10.0.111.200:55164 208.85.40.20:443 ESTABLISHED
 TCP 10.0.111.200:55335 207.200.35.240:443 ESTABLISHED

 | Installation and Upgrades | 17

 TCP 10.0.111.200:55444 67.199.110.81:443 ESTABLISHED
 TCP 10.0.111.200:56278 104.24.11.90:443 ESTABLISHED

If your server is under attack, you might see output similar to the following, in which the same IP address attempts
to connect to contiguous ports (hundreds or thousands of times) and the connection is timing out (reporting a
status of TIME_WAIT):

 TCP 10.0.111.200:53402 72.21.81.109:60974 TIME_WAIT
 TCP 10.0.111.200:53865 72.21.81.109:60975 TIME_WAIT
 TCP 10.0.111.200:53876 72.21.81.109:60976 TIME_WAIT
 TCP 10.0.111.200:55164 72.21.81.109:60977 TIME_WAIT
 TCP 10.0.111.200:55335 72.21.81.109:60978 TIME_WAIT
 TCP 10.0.111.200:55444 72.21.81.109:60979 TIME_WAIT
 TCP 10.0.111.200:56278 72.21.81.109:60980 TIME_WAIT

If you see this, review your logs to determine the source and cause.

Open your syslog, which is located in /var/log/auth.log or /var/log/secure, depending on your
system configuration.

Look for invalid users in the log, especially a series of login attempts with common user names from the same
address, usually in alphabetical order. For example:

...
Mar 10 18:48:02 sku sshd[1496]: Failed password for invalid user alex from
 1.2.3.4 port 1585 ssh2
...
Mar 14 23:25:52 sku sshd[1496]: Failed password for invalid user alice
 from 1.2.3.4 port 1585 ssh2
...

If you identify attacks, take the following steps:

• Double-check the SSH security settings in this topic.
• Report attackers to your ISP's email address for abuse reports (often abuse@your_isp.com).

Configuring Transfer Server Authentication With the Host-Key Fingerprint
To prevent server impersonation and man-in-the-middle (MITM) attacks, Aspera clients can verify the server's
authenticity before starting a transfer by comparing the trusted SSH host key fingerprint (obtained directly from the
server admin or through an Aspera client web application) with the host key fingerprint returned when the connection
is made. In order to do this, the host key fingerprint or path must be set in the server's aspera.conf.

1. Set the host key fingerprint or path in the transfer server's aspera.conf file.

Note: Server SSL certificate validation (HTTPS) is enforced if a fingerprint is specified in aspera.conf
and HTTP fallback is enabled. If the transfer "falls back" to HTTP and the server has a self-signed certificate,
validation fails. The client requires a properly signed certificate.

If you set the host key path, the fingerprint is automatically extracted from the key file and you do not extract it
manually.

Retrieving and setting the host key fingerprint:

a) Retrieve the server's SHA-1 fingerprint.

 cat /etc/ssh/ssh_host_rsa_key.pub | awk '{print $2}' | base64 -d |
 sha1sum

 | Installation and Upgrades | 18

b) Set the SSH host key fingerprint in aspera.conf. (Go to the next step to set the host key path instead).

 asconfigurator -x
 "set_server_data;ssh_host_key_fingerprint,fingerprint"

This command creates a line similar to the following example of the <server> section of aspera.conf:

<ssh_host_key_fingerprint>7qdOwebGGeDeN7Wv+2dP3HmWfP3
</ssh_host_key_fingerprint>

Setting the host key path: To set the SSH host key path instead of the fingerprint, from which the fingerprint will
be extracted automatically, run the following command:

asconfigurator -x "set_server_data;ssh_host_key_path,ssh_key_filepath"

This command creates a line similar to the following in the <server> section of aspera.conf:

<ssh_host_key_path>/etc/ssh/ssh_host_rsa_key.pub
</ssh_host_key_path>

2. Restart the node service to activate your changes.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Testing a Locally Initiated Transfer
To make sure the software is working properly, set up a connection with the Aspera demo server and test downloads
and uploads.

1. Download test files from the demo server.

Use the following command to download, press y to accept the server's key, and enter the password
demoaspera when prompted:

 ascp -T aspera@demo.asperasoft.com:aspera-test-dir-large/100MB /tmp/

The transfer command is based on the following settings:

Item Value

demo server address demo.asperasoft.com

Login account aspera

password demoaspera

Test file /aspera-test-dir-large/100MB

Download location /tmp/

Transfer settings Fair transfer policy, target rate 10M, minimum rate
1M, encryption disabled.

You should see a message similar to the following:

 | Installation and Upgrades | 19

This message provides the following information:

Item Description

100 MB The name of the file that is being transferred.

28% The percentage completed.

28 MB The amount transferred.

2.2 Gbps The current transfer rate.

01:02 ETA The estimated time the transfer will complete.

2. Upload test files to the demo server.

Run the command to upload the same file (100MB) back to the demo server, to its /Upload directory. Enter the
password demoaspera when prompted:

 ascp -T /tmp/100MB aspera@demo.asperasoft.com:Upload/

Updating the Product License
Update your product license from the command line.

1. Open the license file with write permission.

/opt/aspera/etc/aspera-license

2. Replace the existing license key string with the new one, and save the file.

3. To confirm that the new license information has been updated correctly, run ascp -A to display the current
license information.

 ascp -A

4. If you are using the Node API, reload asperanoded.

 asnodeadmin --reload

Uninstalling
HST Server can be uninstalled without removing existing configuration files.

1. If you are uninstalling in order to upgrade your Aspera product, review the upgrade preparation steps in Before
Upgrading or Downgrading on page 9.

2. Close or stop the following applications and services:

• FASP transfers
• SSH connections

3. Uninstall HST Server by running the following command:

bash /opt/aspera/var/uninstall.sh

Note: This process does not remove Aspera configuration files. If you reinstall an Aspera product, these
configuration files are applied to the new installation.

 | Get Started with an Aspera Transfer Server | 20

Get Started with an Aspera Transfer Server

As a server, HST Server is a remote endpoint that accepts authenticated connections from Aspera client applications
and that participates as a source or destination for authorized transfers. Your server can also take the role of a client
and connect to other Aspera servers to initiate transfers. The following steps describe how to prepare your system as a
server.

1. Review the system requirements and install HST Server.

See Installing HST Server on page 11.

2. Secure your server.

For a compilation of Aspera-recommended security best practices, see Aspera Ecosystem Security Best Practices
on page 318.

a) Configure your firewall (see Configuring the Firewall on page 13).
b) Change and secure the TCP port (see Securing Your SSH Server on page 14).
c) Determine if you want to use server-side encryption at rest. See Server-Side Encryption-at-Rest (EAR) on

page 64 for instructions on configuring this from the command line.

You can also restrict user access to your server, which is described in a later step.

3. Set up the HST Server web UI (deprecated), if using.

See HST Server Web UI (Deprecated) on page 331 for instructions.

4. Add users and configure their access.

Aspera client applications authenticate to the server using operating system accounts on the server. For example,
if a remote client user, "marketing_mgr" wants to transfer with the server, add marketing_mgr as a system user on
the server and then add marketing_mgr as an Aspera transfer user. To secure your server, restrict marketing_mgr's
access to only certain directories on the server (set a docroot), set transfer permissions, and set the default shell as
aspshell.

a) For instructions on adding users, assigning users to aspshell, and setting a docroot, see Setting Up Transfer
Users on page 24.

b) If you prefer to have your users authenticate to the server using SSH keys rather than with passwords, gather
their public keys and install them on the server. For instructions, see Setting Up a User's Public Key on the
Server on page 29.

5. Configure transfer settings and control bandwidth usage.

Aspera FASP transfers can be configured globally, by group, or by user. You can set bandwidth caps and limit
the total number of transfers. For more information on user-specific settings, see aspera.conf - Transfer Server
Configuration on page 60.

You can also set "virtual" bandwidth caps that can be assigned to incoming or outgoing transfers by group or
by user. For more information, see Controlling Bandwidth Usage with Virtual Links (Command Line) on page
48.

6. Set up file validation and processing, if needed.

You can protect your server against malicious software in uploaded files by using out-of-line file validation or
inline file validation. For more information, see Out-of-Transfer File Validation on page 71 and Inline File
Validation on page 74.

You can configure your server to run other customized scripts when an individual file transfer starts or stops, or
when a transfer session starts or stops. For more information, see File Pre- and Post-Processing (Prepost) on page
81.

7. Test that a remote client can access and transfer with your server.

For instructions, see Testing a User-Initiated Remote Transfer on page 30. If you have problems, review the
topics in Troubleshooting on page 313.

Once you confirm that remote clients can access your server, your basic server set up is complete.

 | Get Started as a Transfer Client | 21

• If you want to automatically distribute files and folders to clients when they are added to a specific folder on the
server, see Introduction to Watch Folders and the Aspera Watch Service on page 149.

• If you want to enable server-based clients to synchronize files with your server, with the ability to synchronize
bidirectionally, see Aspera Sync on page 208.

Get Started as a Transfer Client

Aspera transfer clients connect to a remote Aspera transfer server and request a transfer with that server. Your Aspera
application can be used as a client to initiate transfers with Aspera servers, as described in the following steps.

1. Test a locally-initiated transfer to the Aspera demonstration server to confirm your installation and firewall
configuration are operational.

For instructions, see Testing a Locally Initiated Transfer on page 18. This provides a simple walk through of
how to set up a connection with a server and transfer.

2. If you need to authenticate to the remote server with an SSH key, create an SSH key and send the public key to the
server admin.

For instructions on creating an SSH key, see Creating SSH Keys on page 124.

3. To run transfers from the command line, review the instructions for the Aspera command line clients.

Your Aspera product comes with two command line clients: ascp and A4. They are similar but have different
capabilities. For a comparison, see Comparison of Ascp and Ascp 4 Options on page 129.

• For more information about ascp, see Ascp Command Reference on page 89 and Ascp General Examples
on page 104.

• For more information about A4, see Ascp 4 Command Reference on page 134 and Ascp 4 Examples on
page 143.

Once you confirm that you can transfer with your server, your basic set up is complete.

• If you want to automatically distribute files and folders to clients when they are added to a specific folder on the
server, see Introduction to Watch Folders and the Aspera Watch Service on page 149.

• If you want to synchronize files with your server, with the ability to synchronize bidirectionally, see Aspera Sync
on page 208. The async tool requires an additional license on each to run.

For a comparison of automatic transfer tools, see Comparison of Aspera File Delivery and Synchronization Tools on
page 21.

Comparison of Aspera File Delivery and Synchronization
Tools

Your Aspera product includes several transfer tools that can be used for automatic file delivery and synchronization.

• Hot Folders: a Windows-only, GUI-managed automatic file delivery tool.
• Watch Folders: an automatic file delivery tool that is easily managed by using the GUI, Console, or the Node

API.
• Aspera Sync: a multi-directional synchronization tool for when complete file system synchronization is required.

Hot Folders Watch Folders Aspera Sync

Supported platforms Windows only Windows
macOS
Linux
AIX
Solaris

Windows
macOS
Linux
AIX
Solaris

 | Comparison of Aspera File Delivery and Synchronization Tools | 22

Hot Folders Watch Folders Aspera Sync

Linux on z Systems
BSD
Isilon

Linux on z Systems
BSD

Additional license required No No Yes, a Aspera Sync-
enabled license is required
on both endpoints

Interface Aspera desktop GUI Aspera desktop GUI, Node
API in any command
line, command line on the
Aspera client, or Console
web UI.

Aspera client command
line, Console web UI for
management only (no
creation)

Client applications Desktop Client
HST Endpoint
HST Server

HST Endpoint
HST Server

HST Endpoint
HST Server
Drive

Server configuration
required

No No (only need
asperawatchd on server for
pull Watch Folders)

Recommended

Create in Console No, but you can monitor
transfers

Yes, you can create,
monitor, and manage

No, but you can monitor
Aspera Sync jobs and their
associated transfer sessions

Transfer modes • Client to server (push)
• Server to client (pull)

• Client to server (push)
• Server to client (pull)

• Client to server (push)
• Server to client (pull)
• Client and server

(bidirectional)

File delivery or
synchronization

File delivery:

Files and folders added to
or modified within a Hot
Folder on the source are
automatically sent to the
destination folder. Files
deleted from the source
are not deleted on the
destination.

File delivery:

Files and folders added to
or modified within a watch
folder on the source are
automatically sent to the
destination folder. Files
deleted from the source
are not deleted on the
destination.

Synchronization:

All file system changes
(additions, deletions,
and modifications) are
synchronized from source
to destination (push or pull)
or synchronized between
source and destination
(bidirectional).

File system monitoring Windows operating system
notifications.

File system snapshots
collected by asperawatchd.

• In continuous mode:
file system notifications

• In scan (on-demand)
mode: Aspera Sync
scans the file system
on the source side
and compares it to the
Aspera Sync database

• asperawatchd

Transfer schedules • Immediate (as soon as
a file system change

• Immediate (as soon as
a difference between
snapshots is detected)

• Immediate (in
continuous mode
or when using

 | Server Set up Methods | 23

Hot Folders Watch Folders Aspera Sync

in the Hot Folder is
detected)

• On a user-specified
schedule

Aspera Sync with
asperawatchd)

• On a user-specified
schedule (Aspera Sync
run as a cron job)

Growing file support No Yes (on HST Server) No

Database space
requirements

None At least 2 GB free per 1
million files, 3 GB free per
1 million files on Windows

At least 2 GB free per 1
million files, 3 GB free per
1 million files on Windows

Best for • Automatic push and
pull delivery with a
simple GUI interface
that does not require
Console

• Automatic push and
pull delivery with a
simple GUI interface
that does not require
Console

• Managing and
monitoring push
delivery through
Console

• Precise synchronization
between two endpoints
of all file system
changes (including
deletions)

• Bidirectional
synchronization

• Very large file sets -
up to 100 million items
across thousands of
directories

Limitations • Windows only
• GUI must remain open
• In pull mode, pull files

even if they are in use

• Transfer rate of
millions of small files
can become limited
by the speed at which
database metadata can
be written

• Continuous mode
available only for
Windows and Linux
sources

• Transfer rate of
millions of small files
can become limited
by the speed at which
database metadata can
be written

More information IBM Aspera High-Speed
Transfer Server Admin
Guide for Windows

Introduction to Watch
Folders and the Aspera
Watch Service on page
149

Aspera Sync on page
208

Server Set up Methods

Users, groups, and transfers can be configured in several ways, all of which modify the server configuration file
aspera.conf.

• Running asconfigurator commands

Run asconfigurator commands from Terminal to automatically insert parameter settings as well-formed
XML into aspera.conf. Use of asconfigurator commands is described in Set up Users and Groups on page
24 and Configure the Server from the Command Line on page 31.

• Manually editing aspera.conf

https://downloads.asperasoft.com/en/documentation/4
https://downloads.asperasoft.com/en/documentation/4
https://downloads.asperasoft.com/en/documentation/4

 | Set up Users and Groups | 24

Open aspera.conf in a text editor with write permission and add or edit the text in XML format. Find
aspera.conf in the following location:

/opt/aspera/etc/aspera.conf

For templates of aspera.conf parameter settings, see Set up Users and Groups on page 24 and Configure
the Server from the Command Line on page 31.

Set up Users and Groups

Aspera clients connect to HST Server by authenticating as a system user who is configured in the application. The
user can also belong to a group that is configured in the application. Users and groups can be set up by running
asconfigurator commands or directly editing the configuration file, aspera.conf.

Setting Up Transfer Users
The HST Server uses system accounts to authenticate connections from Aspera clients. The system users must be
added and configured as Aspera transfer users before clients can browse the server file system or run FASP transfers
to and from the server. When creating transfer users, you can also specify user-specific settings, such as transfer
bandwidth, docroot, and file handling. User configuration is an important part of securing your server. For a complete
description, see Aspera Ecosystem Security Best Practices on page 318.

Important Configuration Notes:

• Some Aspera features require a docroot in URI format or require a file restriction instead of a docroot. For more
information, see Docroot vs. File Restriction on page 316.

• If users connect to the server by providing IBM Aspera Shares credentials or by providing Node API credentials
that are associated with the transfer user, changes to a user's configuration, such as their docroot, are not applied to
the user until asperanoded is restarted. For instructions, see Restarting Aspera Services on page 316.

To configure a system user account as an Aspera transfer user:

1. To allow the user to access the HST Server web UI (deprecated), configure the user for Apache authentication.

In addition to SSH authentication, HST Server uses Apache's authentication to authorize web UI access. To set up
a system user (asp1 in this example) for Apache authentication, run the htpasswd command below.

Note: On the first run of htpasswd, you must use the -c option to create the file for credential storage,
webpasswd. Do not use the -c option otherwise.

 htpasswd [-c]/opt/aspera/etc/webpasswd asp1

2. Create default (global) transfer settings.

To set default values to prohibit transfers in and out, set the encryption key, and set the default docroot for all
users, run the following commands (if not already set):

 asconfigurator -x "set_node_data;authorization_transfer_in_value,deny"
 asconfigurator -x "set_node_data;authorization_transfer_out_value,deny"
 asconfigurator -x "set_node_data;token_encryption_key,token_key"
 asconfigurator -x "set_node_data;absolute,docroot"

For server security, Aspera recommends the following settings:

• Deny transfers by default, then enable transfers for individual users as required (described in a later step).
• Set the token encryption key to a string of at least 20 random characters.
• Set a default docroot to an empty folder or a part of the file system specific to each user.

If there is a pattern in the docroot of each user, for example, username, you can use a substitutional string. This
way you assign independent docroot to each user without setting a docroot for each user individually

 | Set up Users and Groups | 25

Substitutional String Definition Example

$(name) system user's name /sandbox/$(name)

$(home) system user's home directory $(home)/Documents

3. For server security, Aspera recommends restricting users' read, write, and browse permissions.

Users are given read, write, and browse permissions to their docroot by default. For increased security, change the
global default to deny these permissions:

 asconfigurator -x
 "set_node_data;read_allowed,false;write_allowed,false;dir_allowed,false"

Run the following commands to enable permissions per user, as required:

 asconfigurator -x "set_user_data;user_name,username;read_allowed,true"
 asconfigurator -x "set_user_data;user_name,username;write_allowed,true"
 asconfigurator -x "set_user_data;user_name,username;dir_allowed,true"

4. If you provided an Aspera license during installation (rather than an entitlement), ensure that the transfer user has
read permissions on the Aspera license file (aspera-license) so that they can run transfers.

The license file is found in: /opt/aspera/etc/

5. Restrict user permissions with aspshell.

By default, all system users can establish a FASP connection and are only restricted by file permissions. Restrict
the user's file operations by assigning them to use aspshell, which permits only the following operations:

• Running Aspera uploads and downloads to or from this computer.
• Establishing connections in the application.
• Browsing, listing, creating, renaming, or deleting contents.

These instructions explain one way to change a user account or active directory user account so that it uses the
aspshell; there may be other ways to do so on your system.

Run the following command to change the user login shell to aspshell:

 sudo usermod -s /bin/aspshell username

Confirm that the user's shell updated by running the following command and looking for /bin/aspshell at
the end of the output:

 grep username /etc/passwd
username:x:501:501:...:/home/username:/bin/aspshell

Note: If you use OpenSSH, sssd, and Active Directory for authentication: To make aspshell the default
shell for all domain users, first set up a local account for server administration because this change affects all
domain users. Then open /etc/sssd/sssd.conf and change default_shell from /bin/bash to /
bin/aspshell.

6. Configure user-specific transfer settings.

Besides the default (global) transfer settings, you can create user-specific and group-specific transfer settings. The
user-specific settings have the highest priority, overriding both group and global settings. For more information,
see Configuration Precedence on page 28.

To set user-specific values to authorize transfers in and out, docroot, and target rate, run the following commands:

 asconfigurator -x "set_user_data;user_name,username;authorization_transfer_in_value,allow"
 asconfigurator -x "set_user_data;user_name,username;authorization_transfer_out_value,allow"
 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"
 asconfigurator -x
 "set_user_data;user_name,username;transfer_in_bandwidth_flow_target_rate_default,rate"

 | Set up Users and Groups | 26

 asconfigurator -x
 "set_user_data;user_name,username;transfer_out_bandwidth_flow_target_rate_default,rate"

For more information about other user settings, see aspera.conf - Authorization Configuration on page 31,
aspera.conf - Transfer Configuration on page 33, and aspera.conf - File System Configuration on page 54.

7. Verify the configuration.

If you modify aspera.conf by editing the text, use the following command to verify the XML form and
values:

 asuserdata -v

8. Restart asperanoded and asperacentral to activate your changes.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Run the following command in a Terminal window to restart asperacentral:

 /etc/rc.d/init.d/asperacentral stop
 /etc/rc.d/init.d/asperacentral start

Setting Up Transfer Groups
Transfer settings can be applied to your system's user groups. If users within a group do not have individual transfer
settings, then the group's transfer settings are applied. HST Server doesn't create user groups on the operating system
for you, so you must ensure that the groups exist before adding them to your Aspera product.

1. Determine the user groups to add to your HST Server.

Ensure that you have an existing user group on your operating system, or create a new user group. Please refer
to your operating system's documentation for information on creating user groups. HST Server reads group
information from the following file:

/etc/group

2. Add the user group to your Aspera transfer product

When a transfer group is specified, it overwrites global settings and applies group configuration to corresponding
users. To add group-specific transfer settings, you can use asconfigurator commands with the following
syntax:

 asconfigurator -x "set_group_data;group_name,groupname;parameter,value"

For more information on available settings, see User, Group and Default Configurations on page 299 and the
references in the table below.

Category Description

Configuration Precedence on page 28 When a user is a member of multiple groups, the precedence
setting can be used to determine priority.

aspera.conf - Authorization Configuration on
page 31

Connection permissions, token key, and encryption
requirements.

aspera.conf - Transfer Configuration on page
33

Incoming and outgoing transfer bandwidth and policy
settings.

aspera.conf - File System Configuration on page
54

Docroot, file and directory creation, access permissions,
block sizes, and so on.

 | Set up Users and Groups | 27

You can also manually edit aspera.conf with a text editor.

/opt/aspera/etc/aspera.conf

Add the following section to aspera.conf:

<?xml version='1.0' encoding='UTF-8'?>
<CONF version="2">
 <aaa>
 <realms>
 <realm>
 <users>
 ... <!-- user-specific settings -->
 </users>
 <groups>
 <group> <!-- Each group tag contains a group's profile. -->
 <name>aspgroup</name> <!-- The group name. -->
 <precedence>0</precedence> <!-- Group precedence. -->
 <authorization>...</authorization> <!-- Authorization settings. -->
 <transfer>...</transfer> <!-- Transfer settings. -->
 <file_system>...</file_system> <!-- File System settings. -->
 </group>
 <group>
 ... <!-- Another group's settings-->
 </group>
 </groups>
 </realm>
 <realms>
 </aaa>
 ...
</CONF>

3. Configure the group's transfer settings.

Settings Description

Configuration Precedence on page 28 When a user is a member of multiple groups, the precedence
setting can be used to determine priority.

aspera.conf - Authorization Configuration on
page 31

Connection permissions, token key, and encryption
requirements.

aspera.conf - Transfer Configuration on page
33

Incoming and outgoing transfer bandwidth and policy
settings.

aspera.conf - File System Configuration on page
54

Docroot, file and directory creation, access permissions,
block sizes, and so on.

You can also manually edit aspera.conf with a text editor.

/opt/aspera/etc/aspera.conf

Add the following section to aspera.conf:

<?xml version='1.0' encoding='UTF-8'?>
<CONF version="2">
 <aaa>
 <realms>
 <realm>
 <users>
 ... <!-- user-specific settings -->
 </users>
 <groups>
 <group> <!-- Each group tag contains a group's profile. -->
 <name>aspgroup</name> <!-- The group name. -->
 <precedence>0</precedence> <!-- Group precedence. -->
 <authorization>...</authorization> <!-- Authorization settings. -->
 <transfer>...</transfer> <!-- Transfer settings. -->
 <file_system>...</file_system> <!-- File System settings. -->
 </group>
 <group>
 ... <!-- Another group's settings-->

 | Set up Users and Groups | 28

 </group>
 </groups>
 </realm>
 <realms>
 </aaa>
 ...
</CONF>

4. Verify your configuration.

When you have finished updating the group's settings in aspera.conf, use the following command to verify it
(in this example, verify the group asp-group's settings):

 asuserdata -g asp-group

5. Restart asperanoded and asperacentral to activate your changes.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Run the following command in a Terminal window to restart asperacentral:

 /etc/rc.d/init.d/asperacentral stop
 /etc/rc.d/init.d/asperacentral start

Configuration Precedence
HST Server applies configuration settings in this order: 1) user settings, 2) group settings (and if a user belongs to
more than one group, precedence can be set for each group), 3) global settings, 4) default settings. User settings have
the highest priority and default the lowest.

For example, the table below shows the setting values that are applied to user aspera_user_1 in bold when that
user is also a member of several groups and global settings are configured. In this example, aspera_user_1 is a
member of both the admin and xfer groups. The admin group's precedence setting is 0, which supersedes the xfer
group's setting of 1:

Options "aspera_user_1"
User Settings

"admin" Group
Settings

"xfer" Group
Settings

Global Settings Default Settings

Target rate 5M 10M 15M 40M 45M

Min rate n/a 2M 8M 3M 0

Policy n/a n/a Low Fair Fair

Docroot n/a n/a n/a /pod/
$(name)

n/a

Encryption n/a n/a n/a n/a any

Configuring Precedence of Groups

You can configure a group's precedence in aspera.conf by running the following asconfigurator command:

 asconfigurator -x "set_group_data;group_name,group_name;precedence,value"

Note: A group's precedence setting must be greater than or equal to 0, where 0 is the highest precedence level.

 | Set up Users and Groups | 29

This adds a <group> section to aspera.conf like the one below. In this example, group "admin" has higher
precedence than group "xfer".

<groups>
 <group>
 <name>admin</name>
 <precedence>0</precedence>
 ...
 </group>
 <group>
 <name>xfer</name>
 <precedence>1</precedence>
 ...
 </group>
</groups>

You can also edit aspera.conf manually by opening it with administrative privileges:

/opt/aspera/etc/aspera.conf

In the file, locate the entry for each group, add the <precedence> option, and assign a precedence value as shown
in the example above. After editing the file, validate the XML form and option values by running the following
command:

 asuserdata -v

Setting Up a User's Public Key on the Server
Public key authentication is an alternative to password authentication, providing a more secure authentication method
that allows users to avoid entering or storing a password, or sending it over the network. An Aspera client generates
a key pair (a public key and a private key) on the client computer and provides the public key to the administrator
of the remote Aspera transfer server. The server administrator sets up the client user's public key as described in the
following steps.

For information on how to create public keys, see Creating SSH Keys on page 124.

Important: The HST Server web UI (deprecated) (deprecated) does not support key-based authentication. This
feature is for transfers initiated in the application (including Hot Folders) or the ascp command.

1. Obtain the client user's public key.

The client user should send you a secure email with the public key pasted in the message body or attached as a
text file.

2. Install the public key in the user account on the server.

a) In the home directory of the account that the client will use to access the server, create a directory called .ssh
if it doesn't already exist.

b) Save the key file as authorized_keys in .ssh. If authorized_keys already exists, append the key
file to it.

For example,

mkdir /home/aspera_user_1/.ssh
cat /tmp/id_rsa.pub > /home/aspera_user_1/.ssh/authorized_keys

Where:

• aspera_user_1 is the server user account.
• /tmp/id_rsa.pub is where you saved the public key sent by the user.
• /home/aspera_user_1/.ssh/authorized_keys is the file that contains the public key.

c) Configure permissions on the key.

 | Set up Users and Groups | 30

Make the system user (in this example, user aspera_user_1) the owner of key directory and key file, allow
access by the aspera_user_1 group, and set permissions:

chown -R aspera_user_1:aspera_user_1 /home/aspera_user_1/.ssh
chmod 700 /home/aspera_user_1
chmod 700 /home/aspera_user_1/.ssh
chmod 600 /home/aspera_user_1/.ssh/authorized_keys

Testing a User-Initiated Remote Transfer
Once you have configured an Aspera transfer user on HST Server, test that an Aspera client can successfully connect
to your HST Server and upload a file.

Prerequisites:

• Client: Install an Aspera client application, such as the freely available IBM Aspera Desktop Client or IBM
Aspera Command-Line Interface, on the client computer.

• Server: HST Server must have at least one Aspera transfer user (a system user account that is configured to
authenticate Aspera transfers) configured on it.

If any of the following connection tests fail, see Clients Can't Establish Connection on page 313.

1. On the client, test that you can reach the IP address of your HST Server.

Run the ping command:

 ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2): 56 data bytes
64 bytes from 10.0.0.2: icmp_seq=0 ttl=64 time=8.432 ms
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=7.121 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=5.116 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=4.421 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=3.050 ms
...

In the example above, the address of HST Server is 10.0.0.2 and the output shows successful responses from the
host.

If the output returns "Destination host unreachable," check the firewall configuration of the server.

2. On the client, try a transfer to HST Server by using ascp.

Run the following command on your client machine:

 ascp -P 33001 --mode=send --policy=fair -l 10000 -m
 1000 source_path username@ip_address:destination

For example: (where aspera_user_1 is the example transfer user):

 ascp -P 33001 --mode=send --policy=fair -l 10000 -m 1000 /client-dir/
files aspera_user_1@10.0.0.2:/dir

This command specifies the following values for the transfer:

Item Argument Example Value

TCP Port

Set the TCP port to start the transfer
session.

-P port -P 33001

 | Configure the Server from the Command Line | 31

Item Argument Example Value

Transfer Direction

Specify if the server is the
destination or source.

--mode=direction --mode=send

Transfer Policy

Specify how to share bandwidth
with other network users.

--policy=policy --policy=fair

Maximum Transfer Rate

Set the maximum transfer rate, in
Kbps.

-l rate -l 10000

Maximum transfer rate = 10 Mbps

Minimum Transfer Rate

Set the minimum transfer rate, in
Kbps.

-m rate -l 1000

Minimum transfer rate = 1 Mbps

File or Directory to Upload

Set the path relative to your current
directory.

source /client-dir/files

Transfer User username aspera_user_1

Host Address ip_address 10.0.0.2

Destination Folder

Set the destination path relative to
the transfer user's docroot.

destination dir

In this example, the files are
transferred to the "dir" folder in the
docroot of aspera_user_1.

Configure the Server from the Command Line

The following references describe the server settings that can be configured for HST Server by using the command
line or directly editing the HST Server configuration file, aspera.conf.

aspera.conf - Authorization Configuration
The settings in the <authorization> section of aspera.conf include transfer permissions and token
configuration. Tokens are used by Aspera web applications to authorize transfers between Aspera clients and servers.

Note: For security, Aspera recommends denying incoming and outgoing transfers globally, then allowing transfers
by individual users, as needed. For a compilation of server security best practices, see Aspera Ecosystem Security
Best Practices on page 318.

Configuration methods: These instructions describe how to manually modify aspera.conf. You can
also add and edit these parameters using asconfigurator commands. For more information on using
asconfigurator, see User, Group and Default Configurations on page 299 and run the following command to
retrieve a complete default aspera.conf that includes the asconfigurator syntax for each setting:

 asuserdata -+

 | Configure the Server from the Command Line | 32

1. Open aspera.conf from the following location:

/opt/aspera/etc/aspera.conf

2. Add or locate the <authorization> section, as in the following example:

<authorization>
 <transfer>
 <in>
 <value>allow</value> <!-- Incoming Transfer -->
 <external_provider>
 <url>...</url> <!-- Incoming External Provider URL -->
 <soap>...</soap> <!-- Incoming External Provider SOAP Action -->
 </external_provider>
 </in>
 <out>
 <value>allow</value> <!-- Outgoing Transfer -->
 <external_provider>
 <url>...</url> <!-- Outgoing External Provider URL -->
 <soap>...</soap> <!-- Outgoing External Provider SOAP Action -->
 </external_provider>
 </out>
 </transfer>
 <token>
 <encryption_type>aes-128</encryption_type> <!-- Token Encryption Cipher -->
 <encryption_key> </encryption_key> <!-- Token Encryption Key -->
 <filename_hash> </filename_hash> <!-- Token Filename Hash -->
 <life_seconds>86400</life_seconds> <!-- Token Life (seconds) -->
 </token>
</authorization>

3. Edit settings as needed.

Authorization Settings Reference

Field Description Values Default

Incoming Transfers To enable users to transfer to this computer,
leave the default setting of allow. Set to deny
to prevent transfers to this computer. Set to
token to allow only transfers initiated with
valid tokens to this computer. Token-based
transfers are typically used by web applications
such as IBM Aspera Faspex and IBM Aspera
Shares and require a Token Encryption Key.

allow,
deny, or
token

allow

Incoming External Provider URL Set the URL of the external authorization
provider for incoming transfers. The default
empty setting disables external authorization.
Aspera servers can be configured to check
with an external authorization provider. This
SOAP authorization mechanism can be useful
to organizations requiring custom authorization
rules. Requires a value for Incoming External
Provider SOAP Action.

HTTP
URL

blank

Incoming External Provider SOAP
Action

The SOAP action required by the external
authorization provider for incoming transfers.
Required if Incoming External Provider URL is
set.

text string blank

Outgoing Transfers To enable users to transfer from this computer,
leave the default setting of allow. Set to deny
to prevent transfers from this computer. Set to
token to allow only transfers initiated with
valid tokens from this computer. Token-based
transfers are typically used by web applications

allow,
deny, or
token

allow

 | Configure the Server from the Command Line | 33

Field Description Values Default

such as Faspex and require a Token Encryption
Key.

Outgoing External Provider URL Set the URL of the external authorization
provider for outgoing transfers. The default
empty setting disables external authorization.
HST Server can be configured to check with
an external authorization provider. This SOAP
authorization mechanism can be useful to
organizations requiring custom authorization
rules. Requires a value for Outgoing External
Provider Soap Action.

HTTP
URL

blank

Outgoing External Provider Soap
Action

The SOAP action required by the external
authorization provider for outgoing transfers.
Required if Outgoing External Provider URL is
set.

text string blank

Token Encryption Cipher Set the cipher used to generate encrypted
transfer tokens.

aes-128,
aes-192,
or
aes-256

aes-128

Token Encryption Key Set the secret text phrase that is used to authorize
those transfers configured to require token.
Aspera recommends setting a token encryption
key of at least 20 random characters. For more
information, see Require Token Authorization:
Set from the Command Line on page 278.

text string blank

Token Filename Hash Set the algorithm with which filenames inside
transfer tokens should be hashed. Use MD5 for
backward compatibility.

sha1,
md5, or
sha-256

sha-256

Token Life (seconds) Set the token expiration for users of web-based
transfer applications.

positive
integer

86400
(24 hrs)

4. Save and validate aspera.conf.

Run the following command to confirm that the XML is correctly formatted and the parameter settings are valid:

 asuserdata -v

aspera.conf - Transfer Configuration
The settings in the <transfer> section of aspera.conf include: bandwidth control, transfer protocol options,
content encryption requirements, encryption-at-rest, and inline validation.

Configuration methods: These instructions describe how to manually modify aspera.conf. You can
also add and edit these parameters using asconfigurator commands. For more information on using
asconfigurator, see User, Group and Default Configurations on page 299 and run the following command to
retrieve a complete default aspera.conf that includes the asconfigurator syntax for each setting:

 asuserdata -+

1. Open aspera.conf from the following location:

/opt/aspera/etc/aspera.conf

 | Configure the Server from the Command Line | 34

2. Add or locate the <transfer/> section, as in the following example:

<transfer>
 <in>
 <bandwidth>
 <aggregate>
 <trunk_id>Disabled</trunk_id> <!-- Incoming VLink ID -->
 </aggregate>
 <flow>
 <target_rate>
 <cap></cap> <!-- Incoming Target Rate Cap -->
 <default>10000</default> <!-- Incoming Target Rate Default -->
 <lock>false</lock> <!-- Incoming Target Rate Lock -->
 </target_rate>
 <min_rate>
 <cap></cap> <!-- Incoming Minimum Rate Cap -->
 <default>0</default> <!-- Incoming Minimum Rate Default -->
 <lock>false</lock> <!-- Incoming Minimum Rate Lock -->
 </min_rate>
 <policy>
 <allowed>any</allowed <!-- Incoming Policy Allowed -->
 <default>fair</default> <!-- Incoming Policy Default -->
 <lock>false</lock> <!-- Incoming Policy Lock -->
 </policy>
 <priority>
 <cap></cap> <!-- Incoming Priority Allowed -->
 <default>normal</default> <!-- Incoming Priority Default -->
 <lock>false</lock> <!-- Incoming Priority Lock -->
 </priority>
 <network_rc>
 <module>delay</module> <!-- Incoming Rate Control Module -->
 <tcp_friendly>false</tcp_friendly> <!-- Incoming TCP Friendly Mode -->
 <predictor>unset</predictor> <!-- Incoming Traffic RTT Predictor -->
 <target_queue>unset</target_queue> <!-- Incoming Rate Control Target Queue -->
 </network_rc>
 </flow>
 </bandwidth>
 </in>
 <out>
 <bandwidth>
 <aggregate>
 <trunk_id>Disabled</trunk_id> <!-- Outgoing VLink ID -->
 </aggregate>
 <flow>
 <target_rate>
 <cap>Unlimited</cap> <!-- Outgoing Target Rate Cap -->
 <default>10000</default> <!-- Outgoing Target Rate Default -->
 <lock>false</lock> <!-- Outgoing Target Rate Lock -->
 </target_rate>
 <min_rate>
 <cap>Unlimited</cap> <!-- Outgoing Minimum Rate Cap -->
 <default>0</default> <!-- Outgoing Minimum Rate Default -->
 <lock>false</lock> <!-- Outgoing Minimum Rate Lock -->
 </min_rate>
 <policy>
 <allowed>any</allowed> <!-- Outgoing Policy Allowed -->
 <default>fair</default> <!-- Outgoing Policy Default -->
 <lock>false</lock> <!-- Outgoing Policy Lock -->
 </policy>
 <priority>
 <cap>high</cap> <!-- Outgoing Priority Allowed -->
 <default>normal</default> <!-- Outgoing Priority Default -->
 <lock>false</lock> <!-- Outgoing Priority Lock -->
 </priority>
 <network_rc>
 <module>delay</module> <!-- Outgoing Rate Control Module -->
 <tcp_friendly>false</tcp_friendly> <!-- Outgoing TCP Friendly Mode -->
 <predictor>unset</predictor> <!-- Outgoing Traffic RTT Predictor -->
 <target_queue>unset</target_queue> <!-- Outgoing Rate Control Target Queue -->
 </network_rc>
 </flow>
 </bandwidth>
 </out>
<encryption>
 <allowed_cipher>any</allowed_cipher> <!-- Encryption Allowed -->
 <fips_mode>false</fips_mode> <!-- Transfer in FIPS-140-2-certified encryption
 mode -->
 <content_protection_required>false
 </content_protection_required>

 | Configure the Server from the Command Line | 35

 <!-- Content Protection Required -->
 <content_protection_secret></content_protection_secret>
 <!-- Content Protection Secret -->
 <content_protection_strong_pass_required>false
 </content_protection_strong_pass_required>
 <!-- Strong Password Required for Content
 Protection -->
 </encryption>
 <protocol_options>
 <bind_ip_address></bind_ip_address> <!–- Bind IP Address -->
 <bind_udp_port>33001</bind_udp_port> <!-- Bind UDP Port -->
 <disable_batching>false</disable_batching> <!-- Disable Packet Batching -->
 <batch_size>0</batch_size> <!-- Batch Size -->
 <datagram_size>0</datagram_size> <!-- Datagram Size -->
 <max_sock_buffer>0</max_sock_buffer> <!-- Maximum Socket Buffer (bytes)-->
 <min_sock_buffer>0</min_sock_buffer> <!-- Minimum Socket Buffer (bytes)-->
 <rtt_autocorrect>true</rtt_autocorrect> <!-- RTT auto correction -->
 <rtt_reverse_infer>true</rtt_reverse_infer> <!-- Reverse path congestion inference -->
 <chunk_size>0</chunk_size> <!-- Chunk Size -->
 </protocol_options>
 <validation_file_start>none</validation_file_start>
 <!-- Validation File Start -->
 <validation_file_stop>none</validation_file_stop>
 <!-- Validation File Stop -->
 <validation_session_start>none</validation_session_start>
 <!-- Validation Session Start -->
 <validation_session_stop>none</validation_session_stop>
 <!-- Validation Session Stop -->
 <validation_threshold>none</validation_threshold>
 <!-- Validation Threshold -->
 <validation_uri>AS_NULL</validation_uri>
 <!-- Validation URI -->
 <validation_threshold_kb>0</validation_threshold_kb>
 <!-- Validation Threshold KB -->
 <validation_threads>5</validation_threads> <!-- Validation Threads -->
 <validation_lua_script_base64></validation_lua_script_base64>
 <!-- Validation Lua Script Base64 -->
 <validation_lua_script_path></validation_lua_script_path>
 <!-- Validation Lua Script Path -->
</transfer>

3. Edit settings as needed.

Transfer Settings Reference

Field Description Values Default

Incoming Vlink ID The ID of the vlink to apply to incoming
transfers. Vlinks are a way to define
aggregate transfer policies. For more
information, see Controlling Bandwidth
Usage with Virtual Links (Command Line)
on page 48.

Vlink IDs Undefined
(Disabled)

Incoming Target Rate
Cap (Kbps)

The maximum target rate for incoming
transfers, in kilobits per second. No
transfer session can exceed this rate at any
time. If the client requests an initial rate
greater than the target rate cap, the transfer
proceeds at the target rate cap. The default
setting of unlimited applies no target
rate cap.

positive integer unlimited

Incoming Target Rate
Default (Kbps)

The default initial rate for incoming
transfers, in kilobits per second. If allowed
("Incoming Target Rate Lock" is set to
false), clients can modify this rate in
real time. This setting is not relevant to
transfers with a fixed bandwidth policy.

positive integer 10000

 | Configure the Server from the Command Line | 36

Field Description Values Default

Incoming Target Rate
Lock

Lock the target rate of incoming transfers
to the default value (set to true). Set to
false to allow users to adjust the transfer
rate of an incoming transfer up to the
"Incoming Target Rate Cap".

true or false false

Incoming Minimum Rate
Cap (Kbps)

The highest minimum rate that an
incoming transfer can request, in kilobits
per second. Client minimum rate requests
that exceed the minimum rate cap are
ignored. The default value of unlimited
applies no cap to the minimum rate.

Important: Aspera strongly recommends
setting the minimum rate cap to zero.
Transfers do not slow below the client's
requested minimum rate unless the
minimum rate is capped on the server. If
the client-requested minimum rate exceeds
network or storage capacity, this can
decrease transfer performance and cause
problems on the target storage.

positive integer or
unlimited

unlimited

Incoming Minimum Rate
Default (Kbps)

The default initial minimum rate for
incoming transfers, in kilobits per second.
If allowed ("Incoming Minimum Rate
Lock" is set to false), clients can modify
the minimum rate in real time, up to the
"Incoming Minimum Rate Cap". This
setting is not relevant to transfers with a
fixed bandwidth policy.

positive integer 0

Incoming Minimum Rate
Lock

Lock the minimum rate of incoming
transfers to the default value (set to true).
Set to false to allow users to adjust the
minimum transfer rate up to the "Incoming
Minimum Rate Cap". This setting is
not relevant to transfers with a fixed
bandwidth policy.

Important: Aspera strongly recommends
setting a lock on minimum rate to prevent
transfers from using minimum rates
that can overwhelm network or storage
capacity, decrease transfer performance,
and cause problems on the target storage.

true or false false

Incoming Bandwidth
Policy Allowed

The bandwidth policies that incoming
transfers can use. Aspera transfers can use
high, fair, low, or fixed bandwidth policies
to determine bandwidth allocation among
transfers.

• any - The server does not deny any
transfer based on policy setting.

high, fair,
low, or any

any

 | Configure the Server from the Command Line | 37

Field Description Values Default

Note: Setting to any allows clients to
request a fixed bandwidth policy. If
the client also requests a high minimum
transfer rate and that is not capped
by the server, the transfer rate can
exceed network or storage capacity.
This can decrease transfer performance
and cause problems on the target
storage. To avoid these problems, set
the allowed policy to fair.

• high - Transfers that use high,
fair, or low bandwidth policies are
allowed. Transfers that request fixed
bandwidth policy are rejected.

• fair - Transfers that use fair
or low bandwidth policies are
allowed. Transfers that request fixed
bandwidth policy are rejected.

• low - Only transfers that use a low
bandwidth policy are allowed. All
others are rejected.

Incoming Bandwidth
Policy Default

The default bandwidth policy for incoming
transfers. Clients can override the default
policy if they specify a policy allowed
by the server (see "Incoming Bandwidth
Policy Allowed") and if "Incoming
Bandwidth Policy Lock" is set to false.

• high - Adjust the transfer rate to fully
utilize the available bandwidth up to
the maximum rate. When congestion
occurs, the transfer rate is twice as fast
as a fair-policy transfer. The high
policy requires maximum (target) and
minimum transfer rates.

• fair - Adjust the transfer rate to fully
utilize the available bandwidth up to
the maximum rate. When congestion
occurs, bandwidth is shared fairly by
transferring at an even rate. The fair
policy requires maximum (target) and
minimum transfer rates.

• low - Adjust the transfer rate to use
the available bandwidth up to the
maximum rate. Similar to fair mode,
but less aggressive when sharing
bandwidth with other network traffic.
When congestion occurs, the transfer
rate is reduced to the minimum rate
until other traffic decreases.

• fixed - Attempt to transfer at the
specified target rate, regardless of
network or storage capacity. This can

high, fair,
low, fixed

fair

 | Configure the Server from the Command Line | 38

Field Description Values Default

decrease transfer performance and
cause problems on the target storage.
Aspera discourages using the fixed
policy except in specific contexts,
such as bandwidth testing. The fixed
policy requires a maximum (target)
rate.

Incoming Bandwidth
Policy Lock

Lock the bandwidth policy of incoming
transfer sessions to the default value (set
to true). Set to false to allow users to
adjust the bandwidth policy.

true or false false

Incoming Priority
Allowed

The highest priority the client can request.
Use the value 0 to unset this option; 1 to
allow high priority, 2 to enforce normal
priority.

0, 1, or 2 1

Incoming Priority Default The initial priority setting. Use the value
0 to unset this option, 1 to allow high
priority; 2 to enforce normal priority

0, 1, or 2 2

Incoming Priority Lock To disallow your clients change the
priority, set the value to true

true or false false

Incoming Rate Control
Module

Set how the transmission rate should
be managed relative to instantaneous
network bandwidth availability. Aspera
recommends that this option be changed
only by advanced users.

When the client does not specify a
configuration, the server configuration is
used. When the client specifies a value
other than delay and the client is the
receiver, then the client configuration
overrides the server configuration.

Values:

• delay: The baseline rate control
module used by Aspera transfers.

• delay-odp: A queue-scaling controller
for overdrive protection.

• delay-adv: An advanced rate
controller.

• delay-laq: A loss-adjusted queueing
(LAQ) rate controller.

Note: The LAQ module is an
experimental rate control module that
is designed to solve issues with target
rate overdrive, high concurrency (when
many FASP sessions run at the same
time), and shallow buffers (limited
packet queuing capability of a router).
When LAQ is set, then it uses the FD31

delay, delay-
odp, delay-
adv, or delay-
laq

delay

 | Configure the Server from the Command Line | 39

Field Description Values Default

RTT predictor unless a different RTT
predictor is explicitly set.

To set a rate control module for outgoing
traffic, set it from the command line
(aspera.conf - Transfer Configuration on
page 33).

TCP Friendly (for
incoming rate control)

This setting is meant for advanced users to
turn TCP-friendly mode on or off (which
is only applied at the local "receiver"
side when the transfer policy is set to
fair). It should only be used with special
instructions for debugging. When enabled
("true"), incoming FASP transfers are
allowed to maintain relative fair bandwidth
share with a TCP flow under congestion.

true or false false

Incoming Traffic RTT
Predictor

The type of predictor to use to compensate
for feedback delay when measuring
RTT. An experimental feature that
might increase transfer rate stability
and throughput by predicting network
congestion. When set to unset, the client-
specified predictor is used and if the client
does not specify a predictor, then none is
used. For more information, see Increasing
Transfer Performance by Using an RTT
Predictor on page 53.

unset, none,
alphabeta,
fd31, bezier,
ets

unset

Incoming Rate Control
Target Queue

The method for calculating the target
queue. Static queuing is good for most
internet connections, whereas dynamic
queuing is good for satellite and other
radio connections. For more information,
see Increasing Transfer Performance by
Using an RTT Predictor on page 53.
When set to unset, the client-specified
transfer queuing method is used and if the
client does not specify a queuing method,
then static is used.

unset, static,
dynamic

unset

Outgoing Vlink ID The ID of the vlink to apply to outgoing
transfers. Vlinks are a way to define
aggregate transfer policies. For more
information, see Controlling Bandwidth
Usage with Virtual Links (Command Line)
on page 48.

Vlink ID Undefined
(Disabled)

Outgoing Target Rate
Cap (Kbps)

The maximum target rate for outgoing
transfers, in kilobits per second. No
transfer session can exceed this rate at any
time. If the client requests an initial rate
greater than the target rate cap, the transfer
proceeds at the target rate cap. The default

positive integer unlimited

 | Configure the Server from the Command Line | 40

Field Description Values Default

setting of unlimited applies no target
rate cap.

Outgoing Target Rate
Default (Kbps)

The default initial rate for outgoing
transfers, in kilobits per second. If allowed
("Outgoing Target Rate Lock" is set to
false), clients can modify this rate
in real time up to the "Outgoing Target
Rate Cap". This setting is not relevant to
transfers with a fixed bandwidth policy.

positive integer 10000

Outgoing Target Rate
Lock

Lock the target rate of outgoing transfers
to the default value (set to true). Set to
false to allow users to adjust the transfer
rate of an outgoing transfer.

true or false false

Outgoing Minimum Rate
Cap (Kbps)

The highest minimum rate that an outgoing
transfer can request, in kilobits per second.
Client minimum rate requests that exceed
the minimum rate cap are ignored. The
default value of unlimited applies no
cap to the minimum rate.

Important: Aspera strongly recommends
setting the minimum rate cap to zero.
Transfers do not slow below the client's
requested minimum rate unless the
minimum rate is capped on the server. If
the client-requested minimum rate exceeds
network or storage capacity, this can
decrease transfer performance and cause
problems on the target storage.

positive integer unlimited

Outgoing Minimum Rate
Default

The default initial minimum rate for
outgoing transfers, in kilobits per second.
If allowed ("Outgoing Minimum Rate
Lock" is set to false), clients can modify
the minimum rate in real time up to the
"Outgoing Minimum Rate Cap". This
setting is not relevant to transfers with a
fixed bandwidth policy.

positive integer 0

Outgoing Minimum Rate
Lock

Lock the minimum rate of outgoing
transfers to the default value (set to true).
Set to false to allow users to adjust
the minimum transfer rate. This setting
is not relevant to transfers with a fixed
bandwidth policy.

Important: Aspera strongly recommends
setting a lock on minimum rate to prevent
transfers from using minimum rates
that can overwhelm network or storage
capacity, decrease transfer performance,
and cause problems on the target storage.

true or false false

 | Configure the Server from the Command Line | 41

Field Description Values Default

Outgoing Bandwidth
Policy Allowed

The bandwidth policies that outgoing
transfers can use. Aspera transfers can use
high, fair, low, or fixed bandwidth policies
to determine bandwidth allocation among
transfers.

• any - The server does not deny any
transfer based on policy setting.

Note: Setting to any allows clients to
request a fixed bandwidth policy. If
the client also requests a high minimum
transfer rate and that is not capped
by the server, the transfer rate can
exceed network or storage capacity.
This can decrease transfer performance
and cause problems on the target
storage. To avoid these problems, set
the allowed policy to fair.

• high - Transfers that use high,
fair, or low bandwidth policies are
allowed. Transfers that request fixed
bandwidth policy are rejected.

• fair - Transfers that use fair
or low bandwidth policies are
allowed. Transfers that request fixed
bandwidth policy are rejected.

• low - Only transfers that use a low
bandwidth policy are allowed. All
others are rejected.

high, fair,
low, or any

any

Outgoing Bandwidth
Policy Default

The default bandwidth policy for outgoing
transfers. Clients can override the default
policy if they specify a policy allowed
by the server (see "Outgoing Bandwidth
Policy Allowed") and if "Outgoing
Bandwidth Policy Lock" is set to false.

• high - Adjust the transfer rate to fully
utilize the available bandwidth up to
the maximum rate. When congestion
occurs, the transfer rate is twice as fast
as a fair-policy transfer. The high
policy requires maximum (target) and
minimum transfer rates.

• fair - Adjust the transfer rate to fully
utilize the available bandwidth up to
the maximum rate. When congestion
occurs, bandwidth is shared fairly by
transferring at an even rate. The fair
policy requires maximum (target) and
minimum transfer rates.

• low - Adjust the transfer rate to use
the available bandwidth up to the
maximum rate. Similar to fair mode,

high, fair,
low, fixed

fair

 | Configure the Server from the Command Line | 42

Field Description Values Default

but less aggressive when sharing
bandwidth with other network traffic.
When congestion occurs, the transfer
rate is reduced to the minimum rate
until other traffic decreases.

• fixed - Attempt to transfer at the
specified target rate, regardless of
network or storage capacity. This can
decrease transfer performance and
cause problems on the target storage.
Aspera discourages using the fixed
policy except in specific contexts,
such as bandwidth testing. The fixed
policy requires a maximum (target)
rate.

Outgoing Bandwidth
Policy Lock

Lock the bandwidth policy of outgoing
transfer sessions to the default value (set
to true). Set to false to allow users to
adjust the bandwidth policy.

true or false false

Outgoing Priority
Allowed

The highest priority your client can
request. Use the value 0 to unset this
option; 1 to allow high priority, 2 to
enforce normal priority.

0, 1, or 2 1

Outgoing Priority Default The initial priority setting. Use the value
0 to unset this option, 1 to allow high
priority; 2 to enforce normal priority.

0, 1, or 2 2

Outgoing Priority Lock To prevent your clients from changing the
priority, set the value to true.

true or false false

Outgoing Rate Control
Module

Set how the transmission rate should
be managed relative to instantaneous
network bandwidth availability. Aspera
recommends that this option be changed
only by advanced users.

When the client does not specify a
configuration, the server configuration is
used. When the client specifies a value
other than delay and the client is the
receiver, then the client configuration
overrides the server configuration.

Values:

• delay: The baseline rate control
module used by Aspera transfers.

• delay-odp: A queue-scaling controller
for overdrive protection.

• delay-adv: An advanced rate
controller.

• delay-laq: A loss-adjusted queueing
(LAQ) rate controller.

delay, delay-
odp, delay-
adv, or delay-
laq

delay

 | Configure the Server from the Command Line | 43

Field Description Values Default

Note: The LAQ module is an
experimental rate control module that
is designed to solve issues with target
rate overdrive, high concurrency (when
many FASP sessions run at the same
time), and shallow buffers (limited
packet queuing capability of a router).
When LAQ is set, then it uses the FD31
RTT predictor unless a different RTT
predictor is explicitly set.

TCP Friendly (for
outgoing rate control)

This setting is meant for advanced users to
turn TCP-friendly mode on or off (which
is only applied at the local "receiver"
side when the transfer policy is set to
fair). It should only be used with special
instructions for debugging. When enabled
("true"), outgoing FASP transfers are
allowed to maintain relative fair bandwidth
share with a TCP flow under congestion.

true or false false

Outgoing Traffic RTT
Predictor

The type of predictor to use to compensate
for feedback delay when measuring
RTT. An experimental feature that
might increase transfer rate stability
and throughput by predicting network
congestion. When set to unset, the client-
specified predictor is used and if the client
does not specify a predictor, then none is
used. For more information, see Increasing
Transfer Performance by Using an RTT
Predictor on page 53.

unset, none,
alphabeta,
fd31, bezier,
ets

unset

Outgoing Rate Control
Target Queue

The method for calculating the target
queue. Static queuing is good for most
internet connections, whereas dynamic
queuing is good for satellite and other
radio connections. For more information,
see Increasing Transfer Performance by
Using an RTT Predictor on page 53.
When set to unset, the client-specified
transfer queuing method is used and if the
client does not specify a queuing method,
then static is used.

unset, static,
dynamic

unset

Content Protection
Required

Set to true to require that uploaded
content be encrypted by the client (enforce
client-side encryption-at-rest).

For more information, see Client-Side
Encryption-at-Rest (EAR) on page 128.

Important: When a transfer falls back to
HTTP or HTTPS, content protection is no
longer supported. If HTTP fallback occurs
while downloading, then–despite entering

true or false false

 | Configure the Server from the Command Line | 44

Field Description Values Default

a passphrase–the file remains encrypted. If
HTTP fallback occurs during upload, then–
despite entering a passphrase–the files are
not encrypted.

Strong Password
Required for Content
Encryption

Set to true to require that the password
for content encryption (client-side
encryption at rest) includes at least 6
characters, of which at least 1 is non-
alphanumeric, at least 1 is a letter, and at
least 1 is a digit.

true or false false

Content Protection Secret Enable server-side encryption-at-rest
(EAR) by setting the passphrase. Files
uploaded to the server are encrypted while
stored there and are decrypted when they
are downloaded. For more information, see
Server-Side Encryption-at-Rest (EAR) on
page 64.

passphrase (none)

Encryption Allowed Set the transfer encryption allowed by this
computer. Aspera strongly recommends
that you require transfer encryption.
Aspera supports three sizes of AES
cipher keys (128, 192, and 256 bits) and
supports two encryption modes, cipher
feedback mode (CFB) and Galois/counter
mode (GCM). The GCM mode encrypts
data faster and increases transfer speeds
compared to the CFB mode, but the server
must support and permit it.

Note: To ensure client compatibility when
requiring encryption, use a cipher with the
form aes-XXX, which is supported by all
clients and servers. Requiring GCM causes
the server to reject transfers from clients
that are running a version of Ascp 3.8.1
or older. When a client requests a shorter
cipher key than is configured on the server
(or in an access key that authorizes the
transfer), the transfer is automatically
upgraded to the server setting. For more
information about how the server and
client negotiate the transfer cipher, see the
description of -c in the Ascp Command
Reference on page 89.

Values:

• any - allow transfers that use any
encryption cipher or none.

• none - require unencrypted transfers
(not recommended).

• aes-128, aes-192, or aes-256 -
allow transfers that use an encryption

any, none,
aes-128,
aes-192,
aes-256,
aes-128-cfb,
aes-192-cfb,
aes-256-cfb,
aes-128-gcm,
aes-192-gcm,
or aes-256-
gcm

any

 | Configure the Server from the Command Line | 45

Field Description Values Default

cipher key that is as long or longer than
the setting. These settings use the CFB
or GCM mode depending on the client
version and cipher requested. Supports
all client versions.

• aes-128-cfb, aes-192-cfb, or
aes-256-cfb - require that transfers
use the CFB encryption mode and a
cipher key that is as long or longer than
the setting. Supports all client versions.

• aes-128-gcm, aes-192-gcm,
or aes-256-gcm - require that
transfers use the GCM encryption
mode introduced in version 3.9.0 and a
cipher that is as long or longer than the
setting.

Do encrypted transfers
in FIPS-140-2-certified
encryption mode

Set to true for ascp to use a FIPS
140-2-certified encryption module. When
enabled, transfer start is delayed while the
FIPS module is verified.

When you run ascp in FIPS mode (that
is, <fips_enabled> is set to true in
aspera.conf), and you use passphrase-
protected SSH keys, you must use keys
generated by running ssh-keygen in a
FIPS-enabled system, or convert existing
keys to a FIPS-compatible format using a
command such as the following:

openssl pkcs8 -topk8 -
v2 aes128 -in id_rsa -
out new-id_rsa

Important: When set to true, all ciphers
and hash algorithms that are not FIPS
compliant will abort transfers.

true or false false

Bind IP Address Specify an IP address for server-side
ascp to bind its UDP connection. If a
valid IP address is given, ascp sends and
receives UDP packets only on the interface
corresponding to that IP address.

Important: The bind address should
only be modified (changed to an address
other than 127.0.0.1) if you, as the System
Administrator, understand the security
ramifications of doing so, and have
undertaken precautions to secure the
SOAP service.

valid IPv4 address None specified

Bind UDP Port Prevent the client-side ascp process from
using the specified UDP port.

integer between 1
and 65535

33001

 | Configure the Server from the Command Line | 46

Field Description Values Default

Disable Packet Batching Set to true to send data packets back-to-
back (no sending a batch of packets). This
results in smoother data traffic at a cost of
higher CPU usage.

true or false false

Batch Size When set to "0" (default), the system uses
a pre-computed batch size. Set this to "1"
for high concurrency servers (senders)
in order to reduce CPU utilization in
aggregate.

Integer 0

Datagram Size Sets the datagram size on the server side.
If size is set with both -Z (client side)
and <datagram_size> (server side),
the <datagram_size> setting is used.
In cases where the client-side is pre-3.3,
datagram size is determined by the -Z
setting, regardless of the server-side setting
for <datagram_size>. In such cases,
if there is no -Z setting, datagram size
is based on the discovered MTU and the
server logs the message "LOG Peer client
doesn't support alternative datagram size".

Integer 1492

Maximum Socket Buffer
(bytes)

Set the upper bound of the UDP socket
buffer of an ascp session below the input
value. The default of 0 will cause the
Aspera sender to use its default internal
buffer size, which may be different for
different operating systems.

positive integer 0

Minimum Socket Buffer
(bytes)

Set the minimum UDP socket buffer size
for an ascp session.

positive integer 0

RTT auto correction Set to true to enable auto correction of
the base (minimum) RTT measurement.
This feature is helpful for maintaining
accurate transfer rates in hypervisor-based
virtual environments.

true or false false

Reverse path congestion
inference

Set to true to prevent the transfer speed
of a session from being adversely affected
by congestion in the reverse (non data-
sending) transfer direction. This feature is
useful for boosting speed in bi-directional
transfers.

true or false true

Chunk Size For multi-session transfers with object
storage, the chunk size must be equal to
or greater than the object storage part size.
For more information, see Multi-Session
Transfers on page 111.

positive integer 0

Run File Validation at
File Start

Validate files by using the specified
method when starting a file transfer (before
file transfer starts).

uri,
lua_script, or
none

none

 | Configure the Server from the Command Line | 47

Field Description Values Default

Run File Validation at
File Stop

Validate files by using the specified
method when file transfer is complete and
file is closed.

uri,
lua_script, or
none

none

Run File Validation at
Session Start

Validate files by using the specified
method when a transfer session starts.

lua_script or
none

none

Run File Validation at
Session Stop

Validate files by using the specified
method when a transfer session ends.

lua_script or
none

none

Run File Validation when
Crossing File Threshold
(Validation Threshold)

Validate files by using the specified
method once the transfer session surpasses
a set number of kilobytes (threshold). The
threshold must be specified by editing
aspera.conf.

Note: For threshold validation, the file
transfer might complete before the file
threshold validation response comes back
(because ascp doesn't pause file transfers
during file threshold validation); therefore,
a complete file transfer could happen even
with validation failure.

uri,
lua_script, or
none

none

Validation Threshold KB Validate files once the download size
exceeds the threshold value. Since
threshold validation can only be triggered
periodically (every second in the worst
case), the file must be large enough to
trigger this validation.

The Validation Threshold option must also
be specified (uri or lua) if this option is
to be recognized by the system.

If Validation Threshold is also enabled,
and this value is not specified (or set to 0),
the ascp session will exit with an error.

Positive integer 0

Validation Threads Enable multiple validations to occur in
parallel validator threads.

If the number of validation threads is
not set to 1, then multiple threads may
perform different types of validations for
different (or the same) files at the same
time. In such a situation, the response
of a validation_file_stop
at the end of a file download might
come before the response of a
validation_threshold for the same
file.

Positive integer 5

Validation URI Use the specified external URL
for validation calls. When this
parameter is defined, at least two
validations, validation_file_start and

URL none

 | Configure the Server from the Command Line | 48

Field Description Values Default

validation_file_stop will happen for every
file.

The entry should define a URL, port,
and URL handler for validation. For
example, http://127.0.0.1:8080/
SimpleValidator

This value must be defined if any of the
following values are set to uri:

• validation_file_start

• validation_file_stop

• validation_ session_start

• validation_session_stop

• validation_threshold

Base64-Encoded Lua
Action Script

For Lua API validation, the path to the
base64-encoded Lua script. This value or
"File Path to Lua Action Script" must be
defined if any of the following values are
set to lua_script: Run at File Start,
Run at File Stop, Run at Session Start, Run
at Session Stop, Run when Crossing File
Threshold. If both this option and File Path
to Lua Action Script option are defined,
this value is ignored.

Base64-encoded
string

blank

File Path to Lua Action
Script

For Lua API validation, the path to the Lua
script.

This value or Base64-Encoded Lua Action
Script must be defined if any of the
following values are set to lua_script:

• validation_file_start

• validation_file_stop

• validation_ session_start

• validation_session_stop

• validation_threshold

If both this option and the Base64-Encoded
Lua Action Script option are defined, this
value is used.

Filepath blank

4. Save and validate aspera.conf.

Run the following command to confirm that the XML is correctly formatted and the parameter settings are valid:

 asuserdata -v

Controlling Bandwidth Usage with Virtual Links (Command Line)
FASP transfers attempt to transfer at the maximum transfer rate available. However, too many simultaneous transfers
can overwhelm your storage or leave little bandwidth available for other network activity. To set a bandwidth cap on
the total bandwidth used by incoming or outgoing transfer sessions initiated by all users, groups, or sets of specific
users, set up a virtual link (Vlink).

 | Configure the Server from the Command Line | 49

Vlinks are "virtual" bandwidth caps, in that they are not assigned to a specific transfer session, but to all sessions
assigned to the same Vlink. The total bandwidth that is used by all incoming or outgoing transfer sessions initiated by
users who are assigned to the same Vlink does not exceed the Vlink capacity.

For example, if you want to limit all incoming FASP transfers to 100 Mbps, you can create a Vlink with a 100 Mbps
capacity and assign it globally to all incoming transfers. If a user attempts an upload at 50 Mbps but other incoming
transfers are already using 75 Mbps, then the transfer rates adjust (based on transfer policy) so that the total does not
exceed 100 Mbps.

For another example, if you want to limit to 10 Mbps the total bandwidth that is used by outgoing FASP transfers
(downloads) that are initiated by three specific users, create a Vlink with a 10 Mbps capacity and assign it to outgoing
transfers for those three users. If the three users are running download sessions that already use 10 Mbps and another
download is started by one of the users, the transfer rates of all sessions adjust so that the total bandwidth use by
those users remains 10 Mbps. Transfers by other users that are not assigned the Vlink are not affected, except to use
available bandwidth when the Vlink capacity is not met.

1. Create a Vlink.

To create a Vlink, run the following command as administrator:

 asconfigurator -x
 "set_trunk_data;id,vlink_id;trunk_capacity,bandwidth;trunk_on,true"

You can also specify a multicast port and time-to-live, among other settings. To see a complete list of parameters
with their corresponding asconfigurator commands, run the following command:

 asuserdata -+

The following table describes several parameters that are frequently used:

Tag Description Values Default

Vlink ID The Vlink ID. Sessions assigned with the
same trunk ID share the same bandwidth cap.

positive integer between 1
and 255.

N/A

Vlink Name The Vlink name. This value has no impact on
actual bandwidth capping.

text string blank

Capacity This value reflects the virtual bandwidth
cap in Kbps. When applying this Vlink to a
transfer (e.g. Default outgoing), the transfer's
bandwidth will be restricted by this value.

positive integer in Kbps 50000

On Set to true to activate this Vlink; set to false
to deactivate it.

true/false false

Multicast Port This sets the UDP port through which
virtual link sends and receives multicast
communication messages. Sessions sharing
the same virtual bandwidth cap needs to
have the same port number. To avoid port
conflicts, it is recommended to use the
default UDP port 55001. Do NOT set the port
number to the same one used by FASP data
transfer (33001).

Important: If you have a local firewall on
your server (for example, Windows firewall,
Linux iptables, or Mac ipfw), you will need
to allow the Vlink UDP port (55001, by
default) for multicast traffic.

positive integer between 1
and 65535

55001

 | Configure the Server from the Command Line | 50

Tag Description Values Default

Multicast TTL This sets the Time-to-Live (TTL) field in the
IP header for Vlink multicast packets.

positive integer between 1
and 255

blank

For example, to create a Vlink with an ID of 108, named "50Mbps cap", with a capacity of 50 Mbps (50000 kbps),
run the following command:

 asconfigurator -x "set_trunk_data;id,108;trunk_name,50Mbps
 cap;trunk_capacity,50000;trunk_on,true"

This creates the following text in aspera.conf:

<CONF version="2">
 ...
 <trunks>
 <trunk>
 <id>108</id> <!-- Vlink ID -->
 <name>50Mbps cap</name> <!-- Vlink Name -->
 <capacity>
 <schedule format="ranges">50000</schedule> <!-- Capacity -->
 </capacity>
 <on>true</on> <!-- On -->
 </trunk>
 </trunks>
</CONF>

The capacity of the Vlink is set within a <schedule> tag because the capacity can be scheduled as one value
during a specified time period, and a default value at all other times. For more information on this configuration,
see the knowledge base article Specifying a time varying schedule for a Vlink at https://www.ibm.com/support/
pages/specifying-time-varying-schedule-vlink.

To edit aspera.conf manually, rather than running asconfigurator commands, open the file with write
permissions from the following location:

/opt/aspera/etc/aspera.conf

Validate the aspera.conf file using the asuserdata utility:

 asuserdata -v

2. Apply the Vlink.

Assign a Vlink to global, group, or user settings for transfers in or out. Use the following syntax, updating the
direction (in or out) depending on your needs:

 asconfigurator -x
 "set_node_data;transfer_in_bandwidth_aggregate_trunk_id,id"
 asconfigurator -x
 "set_group_data;group_name,groupname;transfer_out_bandwidth_aggregate_trunk_id,id"
 asconfigurator -x
 "set_user_data;user_name,username;transfer_out_bandwidth_aggregate_trunk_id,id"

For example, to set Vlink 108 as the default for transfers out and set Vlink 109 to the user aspera_user_1 for
transfers out, run the following commands:

 asconfigurator -x
 "set_node_data;transfer_out_bandwidth_aggregate_trunk_id,108"
 asconfigurator -x
 "set_user_data;user_name,aspera_user_1;transfer_out_bandwidth_aggregate_trunk_id,109"

https://www.ibm.com/support/pages/specifying-time-varying-schedule-vlink
https://www.ibm.com/support/pages/specifying-time-varying-schedule-vlink

 | Configure the Server from the Command Line | 51

These commands add the following lines to aspera.conf:

<CONF version="2">
 ...
 <default>
 <transfer>
 <out>
 <bandwidth><aggregate>
 <trunk_id>108</trunk_id> <!-- Vlink #108 for the default
 outgoing sessions. -->
 </aggregate></bandwidth>
 </out>
 <in>
 ...
 </in>
 </transfer>
 </default>
 <aaa><realms><realm>
 <users>
 <user>
 <name>aspera_user_1</name>
 <transfer>
 <out>
 <bandwidth><aggregate>
 <trunk_id>109</trunk_id> <!-- Vlink #109 to the user
 aspera_user_1's outgoing sessions. -->
 </aggregate></bandwidth>
 </out>
 <in>
 ...
 </in>
 </transfer>
 </user>
 </users>
 </realm></realms></aaa>
</CONF>

3. Prevent users from overriding the Vlink settings.

If a user requests a high minimum rate and minimum rates are not locked, the transfer can exceed Vlink limits. To
prevent this:

a) Set the default incoming or outgoing minimum rate to zero (zero is the default) by running the appropriate
command:

 asconfigurator -x
 "set_node_data;transfer_in_bandwidth_flow_min_rate_default,0"
 asconfigurator -x
 "set_node_data;transfer_out_bandwidth_flow_min_rate_default,0"

b) Lock the minimum default transfer rate for select users or globally. The following commands lock minimum
incoming and outgoing transfer rates for all users:

 asconfigurator -x
 "set_node_data;transfer_in_bandwidth_flow_min_rate_lock,true"
 asconfigurator -x
 "set_node_data;transfer_out_bandwidth_flow_min_rate_lock,true"

 | Configure the Server from the Command Line | 52

Global Bandwidth Settings (Command Line)
Global bandwidth usage by incoming and outgoing transfers can be configured from the command line by creating
Vlink(s) that is applied to all users.

In the following example, Vlink 108 is used to limit the upload bandwidth (outgoing transfers) to 88 Mbps (88000
Kbps) and Vlink 109 is used to limit the download bandwidth (incoming transfers) to 99 Mbps (99000 Kbps).

 asconfigurator -x
 "set_trunk_data;id,108;trunk_capacity,88000;trunk_on,true"
 asconfigurator -x
 "set_trunk_data;id,109;trunk_capacity,99000;trunk_on,true"
 asconfigurator -x
 "set_node_data;transfer_in_bandwidth_aggregate_trunk_id,108"
 asconfigurator -x
 "set_node_data;transfer_out_bandwidth_aggregate_trunk_id,109"

The commands create the following lines in aspera.conf.

<?xml version='1.0' encoding='UTF-8'?>
<CONF version="2">
 ...
 <trunks>
 <trunk> <!-- Create a Vlink with 88000 Kbps bandwidth cap. -->
 <id>108</id> <!-- ID: 108 -->
 <capacity>
 <schedule format="ranges">88000</schedule>
 </capacity>
 <on>true</on>
 </trunk>
 <trunk> <!-- Create a Vlink with 99000 Kbps bandwidth cap. -->
 <id>109</id> <!-- ID: 109 -->
 <capacity>
 <schedule format="ranges">99000</schedule>
 </capacity>
 <on>true</on>
 </trunk>
 </trunks>

 <default> <!-- Global settings.-->
 <transfer>
 <out> <!-- Use Vlink ID: 108 for global outgoing bandwidth. -->
 <bandwidth><aggregate><trunk_id>108</trunk_id></aggregate></
bandwidth>
 </out>
 <in> <!-- Use Vlink ID: 109 for global incoming bandwidth. -->
 <bandwidth><aggregate><trunk_id>109</trunk_id></aggregate></
bandwidth>
 </in>
 </transfer>
 </default>
</CONF>

The capacity of the Vlink is set within a <schedule> tag because the capacity can be scheduled as one value
during a specified time period, and a default value at all other times. For more information on this configuration, see
the knowledge base article Specifying a time varying schedule for a Vlink at https://www.ibm.com/support/pages/
specifying-time-varying-schedule-vlink.

To edit aspera.conf manually, rather than running asconfigurator commands, open the file with write
permissions from the following location:

https://www.ibm.com/support/pages/specifying-time-varying-schedule-vlink
https://www.ibm.com/support/pages/specifying-time-varying-schedule-vlink

 | Configure the Server from the Command Line | 53

/opt/aspera/etc/aspera.conf

Validate the aspera.conf file using the asuserdata utility:

 asuserdata -v

Increasing Transfer Performance by Using an RTT Predictor
FASP transfers use delay-based congestion control to dynamically adjust the transfer rate in response to network
congestion, as measured by round-trip time (RTT). As a result, FASP transfer stability is sensitive to feedback delay;
increases in feedback delay decrease FASP transfer stability and throughput. Transfer performance can be improved
by using two experimental configuration options, an RTT predictor and dynamic target queuing.

RTT Predictor

An RTT predictor predicts future feedback delay to decrease transfer rate oscillation and maximize data transfer
under high network congestion conditions. Four RTT predictors are available:

• alphabeta: A linear prediction that is based on a local trend.
• fd31: A linear prediction that is based on a 3-points-backwards difference method.
• bezier: A quadratic Bezier extrapolation.
• ets: An error-trend-seasonality model.

Based on internal testing, fd31 is considered the most effective and robust, but other RTT predictors might perform
better depending on your specific network conditions.

To set a predictor for incoming (transfer_in) or outgoing (transfer_out) transfers, run the following command:

 asconfigurator -x "set_node_data;transfer_{in|
out}_bandwidth_flow_network_rc_predictor,{alphabeta|bezier|ets|fd31}"

You can also set the value to none to force no predictor, or unset to use the client-specified predictor. If the client
does not specify a predictor and the server is set to unset, then no predictor is used.

The fd31 and bezier predictors do not have a bounded asymptotic limit, which can destabilize the RTT prediction
under conditions of high congestion and large buffer size for the transfer link. The prediction range can be restricted
by setting <predictor_limit_range> in aspera.conf.

Dynamic Target Queuing

Target queuing affects the stability of data transfer to the target. By default, Aspera FASP transfers use static target
queuing, in which the target queue is set as a piecewise function of the target rate. On noisy networks, such as satellite
and other radio communication, the congestion signal can be distorted at the physical or data link layer, and this noise
can overwhelm the congestion signal. Static target queuing has only a limited ability to adjust to this noise, decreasing
transfer performance.

Dynamic target queueing is an experimental method to improve transfer speed and stability over noisy networks.
When dynamic target queuing is enabled, the rate control module estimates the noise level and adjusts the target
queue accordingly.

To enable dynamic target queuing for incoming (transfer_in) or outgoing (transfer_out) transfers, run the following
command:

 asconfigurator -x "set_node_data;transfer_{in|
out}_bandwidth_flow_network_rc_target_queue,dynamic"

Command line options override server settings. If no predictor is specified on the client command line, in the client's
aspera.conf, or in the server's aspera.conf, then no predictor is used for the transfer.

 | Configure the Server from the Command Line | 54

aspera.conf - File System Configuration
The settings in the <file_system> section of aspera.conf include the docroot, file permissions, file handling,
filters, and checksum reporting. The absolute path, or docroot, is the area of the file system that is accessible to an
Aspera transfer user. The default empty value allows access to the entire file system. You can set one global docroot
and then further restrict access to the file system by group or individual user.

Important Configuration Notes:

• The default server configuration gives users full access to the server's file system with read, write, and browse
privileges. Aspera strongly recommends setting a global docroot that is an empty folder and setting global file
permissions to false. For a compilation of server security best practices, see Aspera Ecosystem Security Best
Practices on page 318.

• Some Aspera features require a docroot in URI format or require a file restriction instead of a docroot. For more
information, see Docroot vs. File Restriction on page 316.

Configuration methods: These instructions describe how to manually modify aspera.conf. You can
also add and edit these parameters using asconfigurator commands. For more information on using
asconfigurator, see User, Group and Default Configurations on page 299 and run the following command to
retrieve a complete default aspera.conf that includes the asconfigurator syntax for each setting:

 asuserdata -+

1. Open aspera.conf from the following location:

/opt/aspera/etc/aspera.conf

2. Add or locate the <file_system /> section, as in the following example.

<file_system>
 <access>
 <paths>
 <path>
 <absolute peer_ip="ip_address">/path/$(name)</absolute>
 <!-- Absolute Path (conditional) -->
 <absolute>/path/$(name)</absolute> <!-- Absolute Path -->
 <restrictions>
 <restriction></restriction> <!-- File Restriction 1 -->
 <restriction></restriction> <!-- File Restriction 2 -->
 </restrictions>
 <read_allowed>true</read_allowed> <!-- Read Allowed -->
 <write_allowed>true</write_allowed> <!-- Write Allowed -->
 <dir_allowed>true</dir_allowed> <!-- Browse Allowed -->
 </path>
 </paths>
 </access>
 <read_block_size>0</read_block_size> <!-- Read Block Size -->
 <write_block_size>0</write_block_size> <!-- Write Block Size -->
 <read_threads>0</read_threads> <!–- Number of I/O Read Threads -->
 <write_threads>0</write_threads> <!–- Number of I/O Write Threads -->
 <scan_threads>0</scan_threads> <!-- Number of Dir Scanning Threads
 -->
 <meta_threads>0</meta_threads> <!-- Number of Metadata Threads -->
 <worker_threads>0</worker_threads>
 <sparse_file>false</sparse_file> <!-- Sparse File Checking -->
 <fail_on_attr_error>yes</fail_on_attr_error> <!-- Behavior on Attr Error -->
 <compression_method>lz4</compression_method> <!-- Compression Method for File
 Transfer -->
 <use_file_cache>true</use_file_cache> <!-- Use File Cache -->
 <max_file_cache_buffer>0</max_file_cache_buffer> <!-- Max File Cache Buffer-->
 <resume_suffix>.aspx</resume_suffix> <!-- Resume Suffix -->
 <symbolic_links>follow,create</symbolic_links> <!-- Symbolic Link Actions -->
 <preserve_attributes> </preserve_attributes> <!-- Preserve Attributes -->
 <overwrite>allow</overwrite> <!-- Overwrite -->
 <file_manifest>disable</file_manifest> <!-- File Manifest -->
 <file_manifest_path>path</file_manifest_path> <!-- File Manifest Path -->
 <file_manifest_inprogress_suffix>.aspera-inprogress</file_manifest_inprogress_suffix>
 <!-- File Manifest Suffix -->
 <pre_calculate_job_size>any</pre_calculate_job_size><!-- Pre-Calculate Job Size -->

 | Configure the Server from the Command Line | 55

 <replace_illegal_chars></replace_illegal_chars> <!-- Convert Restricted Windows
 Characters -->
 <storage_rc>
 <adaptive>true</adaptive> <!-- Storage Rate Control -->
 </storage_rc>
 <filters> <!-– File Filter Pattern List -->
 <filter>rule1</filter>
 <filter>rule2</filter>
 </filters>
 <file_create_mode> </file_create_mode> <!-- File Create Mode -->
 <file_create_grant_mask>644</file_create_grant_mask><!-- File Create Grant Mask -->
 <directory_create_mode> </directory_create_mode> <!-- Directory Create Mode -->
 <directory_create_grant_mask>755</directory_create_grant_mask>
 <!-- Directory Create Grant Mask -->
 <partial_file_suffix>.partial</partial_file_suffix> <!-- Partial File Suffix -->
 <file_checksum>any</file_checksum> <!-– File Checksum Method -->
</file_system>

3. Edit settings as needed.

File System Settings Reference

Field Description Values Default

Absolute Path The absolute path, or docroot, is the area of the file
system that is accessible to an Aspera transfer user.
The default empty value allows access to the entire
file system. You can set one global docroot and then
further restrict access to the file system by group
or individual user. Docroot paths require specific
formatting depending on where the transfer server's
storage is located.

Format examples

• Local storage absolute path:/home/aspera424/
movies

Or using a placeholder for usernames: /home/
$(name)

• Local storage in URI format: file:////home/
bear/movies

URI format is required for server-side encryption-
at-rest, but is not supported by the Aspera Watch
Service.

Aspera recommends setting a global docroot to an
empty folder or a part of the file system specific
to each user. If there is a pattern in the docroot of
each user, for example, username, you can use a
substitutional string. This allows you to assign an
independent docroot to each user without setting it
individually for each user. See Setting Up Users for
information.

You can also set multiple docroots and make them
conditional based on the IP address from which the
connection is made by editing aspera.conf. To
do so, edit the absolute path setting by adding the IP
address using the following syntax:

<absolute peer_ip="ip_address">path</
absolute>

file path or
URI

undefined
(total
access)

 | Configure the Server from the Command Line | 56

Field Description Values Default

File Restriction Note: A configuration (global, group, or user) can
have a docroot or a file restriction; configurations with
both are not supported.

A set of file system filters that use "*" as a wildcard
and "!" to indicate "exclude". Paths are in URI format;
special characters in a URI must be URL-encoded.

Access to a file is rejected unless the file matches
the restrictions, which are processed in the following
order:

• If a restriction starts with "!", the user is not
allowed to access any files that match the rest of the
restriction.

• If a restriction does not start with "!", the user can
access any file that matches the filter.

• If one or more restrictions do not start with "!", the
user can access any file that matches any one of the
no-"!" restrictions.

Format examples:

• For a specific folder:

file:////docs/*

• For the drive root:

file:///c*

• For ICOS-S3 storage:

s3://my_vault/*

• To exclude access to key files:

!*.key

URI undefined
(total
access)

Read Allowed Set to true (default) to allow users to transfer files
and folders from their docroot.

• true

• false

true

Write Allowed Set to true (default) to allow users to transfer files
and folders to their docroot.

• true

• false

true

Browse Allowed Set to true (default) to allow users to browse their
docroot.

• true

• false

true

Read Block Size (bytes) Set the maximum number of bytes that can be stored
within a block as the block is being transferred from
the source disk drive to the receiver. The default of
zero causes the Aspera sender to use its default internal
buffer size, which may vary by operating system.
This is a performance-tuning parameter for an Aspera
sender (which only takes effect if the sender is a
server).

positive
integer,
where
500MB or
524,288,000
bytes is the
maximum
block size.

0

Write Block Size (bytes) Set the maximum bytes within a block that an ascp
receiver can write to disk. The default of zero causes
the Aspera receiver to use its default internal buffer
size, which may vary by operating system. This is a

positive
integer,
where
500MB or

0

 | Configure the Server from the Command Line | 57

Field Description Values Default

performance-tuning parameter for an Aspera receiver
(which only takes effect if the receiver is a server).

524,288,000
bytes is the
maximum
block size.

Number of I/O read
threads

Set the number of threads the Aspera sender uses to
read file contents from the source disk drive. It takes
effect on both client and server, when acting as a
sender. The default of zero causes the Aspera sender to
use its internal default, which may vary by operating
system. This is a performance-tuning parameter for an
Aspera sender.

positive
integer

0

Number of I/O Write
Threads

Set the number of threads the Aspera receiver uses to
write the file contents to the destination disk drive. It
takes effect on both client and server, when acting as a
receiver. The default of zero causes the Aspera receiver
to use its internal default, which may vary by operating
system. This is a performance-tuning parameter for an
Aspera receiver.

positive
integer

0

Number of Dir Scanning
Threads

Set the number of threads the Aspera sender uses to
scan directory contents. It takes effect on both client
and server, when acting as a sender. The default of zero
causes the Aspera sender to use its internal default.
This is a performance-tuning parameter for an Aspera
sender.

positive
integer

0

Number of Metadata
Threads

Set the number of threads the Aspera receiver uses
to create directories or 0 byte files. It takes effect on
both client and server, when acting as a receiver. The
default of zero causes the Aspera receiver to use its
internal default, which may vary by operating system.
This is a performance-tuning parameter for an Aspera
receiver.

positive
integer

0

Number of Worker
Threads

Set the number of threads the Aspera sender and
receiver use to delete files. This is a performance-
tuning parameter.

positive
integer

0

Sparse File Checking Set to true to enable sparse file checking, which
tells the Aspera receiver to avoid writing zero blocks
and save disk space. The default of false to tell
the Aspera receiver to write all the blocks. This is a
performance-tuning parameter for an Aspera receiver.

true or
false

false

Behavior on Attr Error Set behavior for when operations attempt to set or
change file attributes (such as POSIX ownership,
ACLs, or modification time) and fail. Setting to yes
returns an error and causes the operation to fail. Setting
to no logs the error and the operation continues

no or yes yes

Compression Method for
File Transfer

Set the compression method to apply to transfers. It
applies to both the client and server.

lz4, qlz,
zlib, or
none

lz4

 | Configure the Server from the Command Line | 58

Field Description Values Default

Use File Cache Set to true (default) to enable per-file memory
caching at the data receiver. File level memory
caching improves data write speed on Windows
platforms in particular, but uses more memory. This is
a performance tuning parameter for an Aspera receiver.

Aspera suggests using a file cache on systems that are
transferring data at speeds close to the performance of
their storage device, and disable it for system with very
high concurrency (because memory utilization will
grow with the number of concurrent transfers).

true or
false

true

Max File Cache Buffer
(bytes)

Set the maximum size allocated for per-file memory
cache (see Use File Cache) in bytes. The default of
zero will cause the Aspera receiver to use its internal
buffer size, which may be different for different
operating systems. This is a performance tuning
parameter for an Aspera receiver.

positive
integer

0

Resume Suffix Set the file name extension for temporary metadata
files used for resuming incomplete transfers. Each data
file in progress will have a corresponding metadata file
with the same name plus the resume suffix specified by
the receiver. Metadata files in the source of a directory
transfer are skipped if they end with the sender's
resume suffix.

text string .aspx

Symbolic Link Actions Set how the server handles symbolic links. For more
information about the actions and the interaction
between the server configuration and the client
request, see Symbolic Link Handling on page 122.
Combinations of values are logically ORed before
use. For example, use none alone to mean skip,
and shut out other options; when both follow and
follow_wide are set, the latter is recognized.

none,
create,
follow,
follow_wide,
or any
combination
of the above
delimited by
commas

follow,create

Preserve Attributes Set the file creation policy. Set to none to not
preserve the timestamps of source files. Set to times
to preserve the timestamp of the source files at
destination.

Note: For Limelight storage, only the preservation of
modification time is supported.

none or
times

blank (use
the client
setting)

Overwrite Set to allow to allow Aspera clients to overwrite
existing files on the server, as long as file permissions
allow that action.

If set to deny, clients who upload files to the server
cannot overwrite existing files, regardless of file
permissions.

allow or
deny

allow

File Manifest Set to text to generate a text file "receipt" of all
files within each transfer session. Set to disable to
not create a File Manifest. The file manifest is a file
containing a list of everything that was transferred

text,
disable,
or none

none

 | Configure the Server from the Command Line | 59

Field Description Values Default

in a given transfer session. The filename of the File
Manifest itself is automatically generated based on the
transfer session's unique ID. The location where each
manifest is written is specified by the File Manifest
Path value. If no File Manifest Path is specified, the
file will be generated under the destination path at the
receiver, and under the first source path at the sender.

File Manifest Path Specify the location to store manifest files. Can be an
absolute path or a path relative to the transfer user's
home.

Note: File manifests can only be stored locally. Thus,
if you are using S3, or other non-local storage, you
must specify a local manifest path.

text string blank

File Manifest Suffix Specify the suffix of the manifest file during file
transfer.

text string .aspera-
inprogress

Pre-Calculate Job Size Set to yes to enable calculating job size before
transferring. Set to no to disable calculating job
size before transferring. Set to any to follow client
configurations.

yes, no, or
any

any

Convert Restricted
Windows Characters

To enable the replacement of reserved Windows
characters in file and directory names with a non-
reserved character, set to the single byte, non-restricted
character that will be used for the replacement. Only
applies to files written to the local Windows file
system; to enable on the peer it must be set on the
peer's system.

single-
byte, non-
restricted
character

blank

File Filter Pattern List Exclude or include files and directories with the
specified pattern in the transfer. Add multiple entries
for more inclusion/exclusion patterns. To specify
an inclusion, start the pattern with '+ ' (+ and a
whitespace). To specify an exclusion, start the pattern
with '- ' (- and a whitespace). Two symbols can be used
in the setting of patterns:

• A "*" (asterisk) represents zero to many characters
in a string. For example, *.tmp matches .tmp
and abcde.tmp.

• A "?" (question mark) represents a single character.
For example, t?p matches tmp but not temp.

For details on specifying rules, see Using Filters to
Include and Exclude Files on page 116.

This option applies only when the server is acting as
a client. Servers cannot exclude files or directories
uploaded or downloaded by remote clients.

text entries blank

Partial File Name Suffix Set the filename extension on the destination computer
while the file is being transferred. Once the file has
been completely transferred, this filename extension is
removed.

text string blank

 | Configure the Server from the Command Line | 60

Field Description Values Default

Note: This option only takes effect when it is set on the
receiver side.

File Checksum Method Set the type of checksum to calculate for transferred
files. The content of transfers can be verified by
comparing the checksum value at the destination with
the value read at the source. For more information, see
Reporting Checksums on page 66.

any, md5,
sha1,
sha256,
sha384, or
sha512

any

4. Save and validate aspera.conf.

Run the following command to confirm that the XML is correctly formatted and the parameter settings are valid:

 asuserdata -v

aspera.conf - Transfer Server Configuration
The settings in the <central_server> section of aspera.conf include the network and port that asperacentral
uses to process transfer requests and how to manage the asperacentral database.

Configuration methods: These instructions describe how to manually modify aspera.conf. You can
also add and edit these parameters using asconfigurator commands. For more information on using
asconfigurator, see User, Group and Default Configurations on page 299 and run the following command to
retrieve a complete default aspera.conf that includes the asconfigurator syntax for each setting:

 asuserdata -+

1. Open aspera.conf from the following location:

/opt/aspera/etc/aspera.conf

2. Add or locate the <central_server/> section, as shown in the following example:

<central_server>
 <address>127.0.0.1</address> <!--
 Address -->
 <port>40001</port> <!-- Port
 -->
 <persistent_store>enable</persistent_store> <!--
 Persistent Storage -->
 <files_per_session>1000</files_per_session> <!-- Files
 Per Session -->
 <persistent_store_path></persistent_store_path> <!--
 Persistent Storage Path -->
 <persistent_store_max_age>86400</persistent_store_max_age> <!--
 Maximum Age -->
 <persistent_store_on_error>ignore</persistent_store_on_error> <!-- Exit
 Central on Storage Error -->
 <compact_on_startup>enable</compact_on_startup> <!--
 Compact Database on Startup -->
 <ignore_empty_files>true</ignore_empty_files> <!--
 Ignore Empty Files -->
 <ignore_no_transfer_files>true</ignore_no_transfer_files> <!--
 Ignore No-transfer Files -->
 <validation_timeout>300</validation_timeout> <!-- Post-
Transfer Validation Timeout -->
</central_server>

3. Edit settings as needed.

 | Configure the Server from the Command Line | 61

Central Server Settings Reference

Setting Description Values Default

Address The network interface address on which the transfer
server listens. The default value of 127.0.0.1 enables
the transfer server to accept transfer requests from
the local computer. If you set the address to 0.0.0.0,
the transfer server can accept requests on all network
interfaces. Alternatively, a specific network interface
address may be specified.

Valid IPv4
address

127.0.0.1

Port The port on which the transfer server accepts transfer
requests.

Positive integer
1 - 65535

40001

Persistent
Storage

Enable to retain data that is stored in the database
between reboots of asperacentral.

Enable or
Disable

Enable

Files Per Session The maximum number of files that can be retained for
persistent storage.

Positive integer 1000

Persistent
Storage Path

The location in which to store data between reboots of
asperacentral. If the path is a directory, then a file is
created with the default name central-store.db.
Otherwise, the file is named as specified in the path.

Valid system
path

If the application
is installed in the
default location,
then the path is
the following:

/opt/
aspera/var/

Maximum Age
(seconds)

Maximum allowable age (in seconds) of data to be
retained in the database.

Positive integer 86400

Exit Central on
Storage Error

The behavior of the asperacentral server if a database
write error occurs.

Ignore or Exit Ignore

Compact
Database on
Startup

Enable or disable compacting (vacuuming) the
database when the transfer server starts.

Enable or
Disable

Enable

Ignore Empty
Files

Set to true to block the logging of zero-byte files. true or false true

Ignore No-
transfer Files

Set to true to block the logging of files that were not
transferred because they exist at the destination.

true or false true

Post-Transfer
Validation
Timeout

How many seconds to wait for a post-transfer validator
to update the status of a file before the file is released
from the validator and its status is changed back to
"to_be_validated". This allows a file to be validated by
a different validator if the first validator stops working.

For more information, see Out-of-Transfer File
Validation on page 71.

Positive integer 300

4. Save and validate aspera.conf.

Run the following command to confirm that the XML is correctly formatted and the parameter settings are valid:

 asuserdata -v

 | Configure the Server from the Command Line | 62

aspera.conf - Filters to Include and Exclude Files
Filters refine the list of source files (or directories) to transfer by indicating which to skip or include based on name
matching. When no filtering rules are specified by the client, Ascp transfers all source files in the transfer list; servers
cannot filter client uploads or downloads.

Filters can be specified on the ascp command line and in aspera.conf. Ascp applies filtering rules that are set in
aspera.conf before it applies rules on the command line.

The ascp -N and -E options let you specify filter rules individually for each transfer, while filter options
configured in aspera.conf allow you to have the same rules applied to all transfers.

Filter rules that ascp finds in aspera.conf are always applied before any command-line rules. This allows you to
specify individual command-line rules to augment a core set specified in aspera.conf.

Rule Syntax

A rule consists of a "+" or "-" sign (indicating whether to include or exclude), followed by a space character,
followed by a pattern. A pattern can be a file or directory name, or a set of names expressed with UNIX glob patterns.

Basic usage

• Filtering rules are applied to the transfer list in the order that they are listed in aspera.conf.
• Filtering is a process of exclusion, and include rules override exclude rules that follow them. Include rules cannot

add back files that are excluded by a preceding exclude rule.
• Include rules must be followed by at least one exclude rule, otherwise all files are transferred because none are

excluded. To exclude all unmatched files, add two final rules: "- *" and "- .*".
• Filtering operates only on the set of files and directories in the transfer list. An include rule cannot add files or

directories that are not already part of the transfer list.

Example Transfer Result

- rule Transfer all files and directories except those with names that match rule.

+ rule Transfer all files and directories because none are excluded.

+ rule1
- rule2

Transfer all files and directories with names that match rule1, as well as all other files
and directories except those with names that match rule2.

- rule1
+ rule2

Transfer all files and directories except those with names that match rule1. All files
and directories not already excluded by rule1 are included because no additional
exclude rule follows -N 'rule2'. Additional filters can be set for transfers in the
GUI (Adding and Editing Connections) or on the command line (Using Filters to
Include and Exclude Files on page 116).

Filtering Rule Application

Filtering order

Filtering rules are applied to the transfer list in the order they appear in the list.

1. The first file (or directory) in the transfer list is compared to the pattern of the first rule.
2. If the file matches the pattern, Ascp includes it or excludes it and the file is immune to any following rules.

Note: When a directory is excluded, directories and files in it are also excluded and are not compared to any
following rules.

3. If the file does not match, it is compared to the next rule and repeats the process for each rule until a match is
found or until all rules have been tried.

4. If the file never matches any exclude rules, it is included in the transfer.

 | Configure the Server from the Command Line | 63

5. The next file or directory in the transfer list is then compared to the filtering rules until all eligible files are
evaluated.

Rule Patterns

Rule patterns (globs) use standard globbing syntax that includes wildcards and special characters, as well as several
Aspera extensions to the standard.

• Character case: Case always matters, even if the file system does not enforce such a distinction. For example, on
Windows FAT or NTFS file systems and macOS HPFS+, a file system search for "DEBUG" returns files "Debug"
and "debug". In contrast, Ascp filter rules use exact comparison, such that "debug" does not match "Debug". To
match both, use "[Dd]ebug".

• Partial matches: With globs, unlike standard regular expressions, the entire filename or directory name must
match the pattern. For example, the pattern abc*f matches abcdef but not abcdefg.

For details on using wildcards and special characters to build rule patterns, see Using Filters to Include and Exclude
Files on page 116.

Set Rules

Filter rules can be set in aspera.conf in the following ways:

• by modifying aspera.conf with the asconfigurator tool
• by modifying aspera.conf directly with a text editor

In order to run asconfigurator successfully, you must meet the following requirements:

1. have write access to aspera.conf
2. not be restricted to aspshell, which does not allow running asconfigurator

The set commands for user, group, and global filter settings use the following syntax:

asconfigurator -x
 "set_user_data;user_name,username;file_filters,|rule1|rule2...|ruleN"
asconfigurator -x
 "set_group_data;group_name,groupname;file_filters,|rule1|rule2...|ruleN"
asconfigurator -x "set_node_data;file_filters,|rule1|rule2...|ruleN"

Where:

• Each rule argument, including the first, must begin with a "|" character, which serves as the separator between
multiple rules.

• To clear rules, run asconfigurator by specifying "file_filters," without rule arguments. Note that the
comma in "file_filters," is still required. See the example below.

• Running asconfigurator replaces the specified settings; it does not add to them.

To edit aspera.conf, open it from the following location:

/opt/aspera/etc/aspera.conf

See the following examples for the correct syntax.

Examples

• Set global include and exclude filters:

 asconfigurator -x "set_node_data;file_filters,|+ file.txt|- *.txt"

Results in aspera.conf:

 <default>
 <file_system>
 <filters>

 | Configure the Server from the Command Line | 64

 <filter>+ file.txt</filter>
 <filter>- *.txt</filter>
 </filters>
 </file_system>
 </default>

• Sets filters for user asp1:

 asconfigurator -x "set_user_data;user_name,asp1;file_filters,|+ abc/wxy/
tuv/**|- abc/**/def"

Results in aspera.conf:

 <aaa>
 <realms>
 <realm>
 <users>
 <user>
 <name>asp1</name>
 <file_system>
 <filters>
 <filter>+ abc/wxy/tuv/**</filter>
 <filter>- abc/**/def</filter>
 </filters>
 </file_system>
 </user>
 </users>
 </realm>
 </realms>
 </aaa>

• Clears all filters for the group asgroup:

 asconfigurator -x "set_group_data;group_name,asgroup;file_filters,"

Results in aspera.conf:

 <groups>
 <group>
 <name>asgroup</name>
 <file_system>
 <filters />
 </file_system>
 </group>
 </groups>

Server-Side Encryption-at-Rest (EAR)
When files are uploaded from an Aspera client to HST Server, server-side encryption-at-rest (EAR) saves files on
disk in an encrypted state. When downloaded from HST Server, server-side EAR first decrypts files automatically,
and then the transferred files are written to the client's disk in an unencrypted state.

Capabilities

Server-side EAR provides the following advantages:

• It protects files against attackers who might gain access to server-side storage. This is important primarily when
using NAS storage or cloud storage, where the storage can be accessed directly (and not just through the computer
running HST Server or HST Endpoint).

 | Configure the Server from the Command Line | 65

• It is especially suited for cases where the server is used as a temporary location–for example, when a client
uploads a file and another one downloads it.

• Server-side EAR can be used together with client-side EAR. When used together, content is doubly encrypted. For
more information, see Client-Side Encryption-at-Rest (EAR) on page 128.

• Server-side EAR doesn't create an "envelope" as client-side EAR does. The transferred file stays the same size
as the original file. The server stores the metadata necessary for server-side EAR separately in a file of the same
name with the file extension .aspera-meta. By contrast, client-side EAR creates a envelope file containing
both the encrypted contents of the file and the encryption metadata, and it also changes the name of the file by
adding the file extension .aspera-env.

• It works with both regular transfers (FASP) and HTTP fallback transfers.

Requirements

If the following requirements are not met, then the server can have both encrypted and unencrypted content. This can
cause file corruption on the server or unintended overwriting of downloaded files on the client.

• Server-side EAR must be configured when the server is first set up.
• When multiple users have access to the same area of the file system, they must use the same EAR configuration.

Limitations and Considerations

• Server-side EAR is not designed for cases where files need to move in an encrypted state between multiple
computers. For that purpose, client-side EAR is more suitable: files are encrypted when they first leave the
client, then stay encrypted as they move between other computers, and are decrypted when they reach the final
destination and the passphrase is available.

• Server-side EAR does not work with multi-session transfers (using ascp -C or Node API multi_session
set to greater than 1).

• Do not mix server-side EAR and non-EAR files in transfers, which can happen if server-side EAR is enabled after
the server is in use or if multiple users have access to the same area of the file system but have different EAR
configurations.

Configuring Server-Side EAR

1. Set the docroot in URI format.

Server-side EAR requires the storage to have a docroot in URI format, such that it is prefixed with file:///.
The third slash (/) does not serve as the root slash for an absolute path. For example, a docroot of /home/xfer
would be set as file:////home/xfer and a docroot of C%3A\Users\xfer would be set as file:///C
%3A\Users\xfer.

To set the docroot for a user, group, or default from the command line, run the appropriate asconfigurator
command:

 asconfigurator -x
 "set_user_data;user_name,username;absolute,file:///filepath"
 asconfigurator -x
 "set_group_data;group_name,group_name;absolute,file:///filepath"
 asconfigurator -x "set_node_data;absolute,file:///filepath"

2. Set the password.

The server-side EAR password can be set for all users (global), per group, or per user. Set the password by using
asconfigurator or manually editing aspera.conf:

To set the EAR password for a user, group, or default, run the appropriate command:

 asconfigurator -x
 "set_user_data;user_name,username;transfer_encryption_content_protection_secret,passphrase"
 asconfigurator -x
 "set_group_data;group_name,group_name;transfer_encryption_content_protection_secret,passphrase"

 | Configure the Server from the Command Line | 66

 asconfigurator -x
 "set_node_data;transfer_encryption_content_protection_secret,passphrase"

Reporting Checksums
File checksums are useful for trouble-shooting file corruption, allowing you to determine at what point in the transfer
file corruption occurred. Aspera servers can report source file checksums that are calculated on-the-fly during transfer
and then sent from the source to the destination.

To support checksum reporting, the transfer must meet both of the following requirements:

• Both the server and client computers must be running HST Server (formerly Enterprise Server and Connect
Server) or HST Endpoint (formerly Point-to-Point Client) version 3.4.2 or higher.

• The transfer must be encrypted. Encryption is enabled by default.

The user on the destination can calculate a checksum for the received file and compare it (manually or
programmatically) to the checksum reported by the sender. The checksum reported by the source can be retrieved
in the destination logs, a manifest file, in IBM Aspera Console, or as an environment variable. Instructions for
comparing checksums follow the instructions for enabling checksum reporting.

Checksum reporting is disabled by default. Enable and configure checksum reporting on the server by using the
following methods:

• Edit aspera.conf with asconfigurator.
• Set ascp command-line options (per-transfer configuration).

Command-line options override the settings in aspera.conf.

Important: When checksum reporting is enabled, transfers of very large files (>TB) take a long time to resume
because the entire file must be reread.

Overview of Checksum Configuration Options

asconfigurator Option

ascp Option

Description

file_checksum

--file-checksum=type

Enable checksum reporting and specify the type of checksum to
calculate for transferred files.

any - Allow the checksum format to be whichever format the client
requests. (Default in aspera.conf)
md5 - Calculate and report an MD5 checksum.
sha1 - Calculate and report a SHA-1 checksum.
sha256 - Calculate and report a SHA-256 checksum.
sha384 - Calculate and report a SHA-384 checksum.
sha512 - Calculate and report a SHA-512 checksum.

Note: The default value for the ascp option is none, in which case the
reported checksum is the one configured on the server, if any.

file_manifest

--file_manifest=output

The file manifest is a file that contains a list of content that was
transferred in a transfer session. The file name of the file manifest is
automatically generated from the transfer session ID.

When set to none, no file manifest is created. (Default)

When set to text, a text file is generated that lists all files in each
transfer session.

 | Configure the Server from the Command Line | 67

asconfigurator Option

ascp Option

Description

file_manifest_path

--file_manifest_path=path

The location where manifest files are written. The location can be an
absolute path or a path relative to the transfer user's home directory. If
no path is specified (default), the file is generated under the destination
path at the receiver, and under the first source path at the sender.

Note: File manifests can be stored only locally. Thus, if you are using
S3 or other non-local storage, you must specify a local manifest path.

Enabling checksum reporting by editing aspera.conf

To enable checksum reporting, run the following command:

 asconfigurator -x "set_node_data;file_checksum,checksum"

To enable and configure the file manifest where checksum report data is stored, run the following commands:

 asconfigurator -x "set_node_data;file_manifest,text"
 asconfigurator -x "set_node_data;file_manifest_path,filepath"

These commands create lines in aspera.conf as shown in the following example, where checksum type is md5,
file manifest is enabled, and the path is /tmp.

<file_system>
 ...
 <file_checksum>md5</file_checksum>
 <file_manifest>text</file_manifest>
 <file_manifest_path>/tmp</file_manifest_path>
 ...
</file_system>

Enabling checksum reporting in an ascp session

To enable checksum reporting on a per-transfer-session basis, run ascp with the --file-checksum=hash
option, where hash is sha1, md5, sha-512, sha-384, sha-256, or none (the default).

Enable the manifest with --file-manifest=output where output is either text or none. Set the path to the
manifest file with --file-manifest-path=path.

For example:

 ascp --file-checksum=md5 --file-manifest=text --file-manifest-path=/
tmp file aspera_user_1@189.0.202.39:/destination_path

Setting up a Pre/Post-processing Script

An alternative to enabling and configuring the file manifest to collect checksum reporting is to set up a pre/post-
processing script to report the values.

The checksum of a transferred file is stored in the pre/post environment variable FILE_CSUM, which can be used in
pre/post scripts to output file checksums. For example, the following script outputs the checksum to the file /tmp/
cksum.log:

#!/bin/bash
if [$TYPE == File]; then

 | Configure the Server from the Command Line | 68

 if [$STARTSTOP == Stop]; then
 echo "The file is: $FILE" >> /tmp/cksum.log
 echo "The file checksum is: $FILE_CSUM" >> /tmp/cksum.log
 chmod 777 $FILE
 fi
fi

For information on pre- and post-processing scripts and environment variables, see File Pre- and Post-Processing
(Prepost) on page 81.

Comparing Checksums

If you open a file that you downloaded with Aspera and find that it is corrupted, you can determine when the
corruption occurred by comparing the checksum that is reported by Aspera to the checksums of the files on the
destination and on the source.

1. Retrieve the checksum that was calculated by Aspera as the file was transferred.

• If you specified a file manifest and file manifest path as part of an ascp transfer or pre/post processing script,
the checksums are in that file in the specified location.

• If you specified a file manifest and file manifest path in the GUI or aspera.conf, the checksums are in a
file that is named aspera-transfer-transfer_id-manifest.txt in the specified location.

2. Calculate the checksum of the corrupted file. This example uses the MD5 checksum method; replace MD5 with
the appropriate checksum method if you use a different one.

csum -h MD5 filepath

3. Compare the checksum reported by Aspera with the checksum that you calculated for the corrupted file.

• If they do not match, then corruption occurred as the file was written to the destination. Download the file
again and confirm that it is not corrupted. If it is corrupted, compare the checksums again. If they do not
match, investigate the write process or attempt another download. If they match, continue to the next step.

• If they match, then corruption might have occurred as the file was read from the source. Continue to the next
step.

4. Calculate the checksums for the file on the source. These examples use the MD5 checksum method; replace MD5
with the appropriate checksum method if you use a different one.

Windows:

> CertUtil -hashfile filepath MD5

Mac OS X:

$ md5 filepath

Linux and Linux on z Systems:

md5sum filepath

AIX:

csum -h MD5 filepath

Solaris:

digest -a md5 -v filepath

5. Compare the checksum of the file on the source with the one reported by Aspera.

 | Configure the Server from the Command Line | 69

• If they do not match, then corruption occurred when the file was read from the source. Download the file again
and confirm that it is not corrupted on the destination. If it is corrupted, continue to the next step.

• If they match, confirm that the source file is not corrupted. If the source file is corrupted, replace it with an
uncorrupted one, if possible, and then download the file again.

Server Logging Configuration for Ascp and Ascp 4
Server transfer logs are stored in the default location (see Log Files on page 330), rotated once they are 10 MB,
and log at "log" level. For ascp transfers, you can configure a different default log directory, log size, and logging
intensity on the server, and apply these settings globally or to specific users. For Ascp 4 transfers, you can configure
a default log size (Ascp 4 does not support user-specific logging settings). These settings do not affect IBM Aspera
Sync logging, which is configured in a different section (see Configuring Aspera Sync Endpoints on page 212).

If the client specifies a log directory on the server (using -R remote_log_dir) or the location and size of the
local log directory (using -L local_log_dir[:size]), then these take precedence over the server settings.

Default vs User-specific Settings

You can set the default logging configuration or assign users to different logging classes, which are sets of logging
configurations.

Note: Default settings override user-specific settings. To enable user-specific settings, do not set default settings.
User settings do not apply to Ascp 4 transfers.

Configuration Methods

Logging settings are configured by running asconfigurator commands (recommended) or by manually editing
aspera.conf. To edit aspera.conf, open it with admin privileges from the following location:

/opt/aspera/etc/aspera.conf

1. To set default logging values, run the following commands, as required:

 asconfigurator -x "set_logging_data;directory,logging_directory"
 asconfigurator -x "set_logging_data;log_size,size_mb"
 asconfigurator -x "set_logging_data;level,log_level"

Object Description

directory The full path to the logging directory. Applies only to
ascp transfers.

log_size The size of the log file, in MB, at which it is rotated
(the oldest information is overwritten by the newest
information). Default: 10 MB. Applies to ascp and
ascp4 transfers.

level The logging level. Valid values are log (default),
dbg1, or dbg2. Applies only to ascp transfers.

These commands modify the <logging> sub-section of the <default> section of aspera.conf (or you
can manually edit the file):

...
<default>
 <file_system>...</file_system>
 <logging>
 <directory>logging_directory</directory>
 <log_size>size_mb</log_size>
 <level>log_level</level>

 | Configure the Server from the Command Line | 70

 </logging>
</default>
...

2. To set user logging values, create logging classes (each with a specific logging configuration) and then assign
users to classes.

a) Create a logging class:

 asconfigurator -x
 "set_log_setting_data;classes,class_name;directory,logging_directory;log_size,size_mb;level,log_level"

Object Description

classes The name of the class. This is the value that you use
to assign users to this "class" of logging settings.

directory The full path to the logging directory. Applies only to
ascp transfers.

log_size The size of the log file, in MB, at which it is rotated
(the oldest information is overwritten by the newest
information). Default: 10 MB. Applies to ascp and
ascp4 transfers.

level The logging level. Valid values are log (default),
dbg1, or dbg2. Applies only to ascp transfers.

b) Assign a user to the logging class:

 asconfigurator -x
 "set_user_data;user_name,username;logging_class,class_name"

For example, the following commands create two logging classes, admin and home. The home logging class
uses the substitution string $(home) to log to the user's home directory, ensuring that the transfer users have access
to the log files for their transfers. They assign user root to the admin logging configuration, and users user1
and user2 to the home logging configuration.

 asconfigurator -x "set_log_setting_data;classes,admin;directory,/root/
logs;log_size,3;level,dbg"
 asconfigurator -x "set_log_setting_data;classes,home;directory,$(home)/
logs;log_size,20";level,dbg"
 asconfigurator -x "set_user_data;user_name,root;logging_class,admin"
 asconfigurator -x "set_user_data;user_name,user1;logging_class,home"

This created the following in aspera.conf:

...
<logging>
 <log_setting>
 <classes>admin</classes>
 <directory>/root/logs</directory>
 <log_size>3</log_size>
 <level>dbg</level>
 </log_setting>
 <log_setting>
 <classes>home</classes>
 <directory>$(home)/logs</directory>
 <log_size>20</log_size>
 <level>log</level>
 </log_setting>
</logging>

 | Configure the Server from the Command Line | 71

<aaa><realms><realm>
 <users>
 <user>
 <name>root</name>
 <logging_class>admin</logging_class>
 <file_system>...</file_system>
 </user>
 <user>
 <name>user1</name>
 <logging_class>home</logging_class>
 <file_system>...</file_system>
 </user>
 <user>
 <name>user2</name>
 <logging_class>home</logging_class>
 <file_system>...</file_system>
 </user>
 </users></realm></realms>
</aaa>
...

3. If you manually edited aspera.conf, save your changes.

4. If you manually edited aspera.conf, validate the XML form of aspera.conf:

 asuserdata -v

Out-of-Transfer File Validation
Out-of-transfer file validation is run as soon as the client uploads a to HST Server. The transfer is reported as
complete and then the validation is run. The validation script uses the Aspera Reliable Query API to retrieve the
list of files to validate and update the file status during validation. The transfer user who is transferring files to the
server must be associated with Node API user credentials in order to use the API. These instructions describe how to
associate a transfer user with Node API user credentials, create a validation script, and configure the server to use out-
of-transfer file validation on files that it receives from specific transfer users, groups, or globally.

This approach has several benefits over inline file validation:

• More efficient use of system resources because the ascp sessions can close before validation is completed.
• Out-of-transfer file validation is applied to transfers that use HTTP(S) fallback transport.
• Files are explicitly reported as "validating" to IBM Aspera Faspex through asperacentral. Files that are validated

inline are reported as "transferring".

1. Associate the transfer user with a Node API username and password, if not already configured.

 asnodeadmin -a -u node_username -p node_password -x transfer_user

To view existing Node API users and the transfer users associated with them, run the following command:

 asnodeadmin -l

2. Create your validation script.

Note: The validation service must be executed on a system that has access to the storage.

The validation script should follow these steps:

a) Identify the files that need to be validated by using the Reliable Query REST API:

curl -X POST -u node_user:password -d '{ "file_transfer_filter":
 { "max_result": 20}, "validation": { "validator_id":

 | Configure the Server from the Command Line | 72

 "validator_id" } }' https://server_name:9092/services/rest/transfers/
v1/files

Where the validator_id is a unique ID to prevent simultaneous validation of the same file by different
validators. The value for max_result sets a "batch size" for how many files are collected for validation by
each POST request, and cannot exceed 1000.

The POST request retrieves the files that are "to_be_validated", updates their state to "validating" and the
owner to the validator ID, and returns the file list, with information similar to the following:

{
 "file_transfer_info_result": {
 "file_transfer_info" : [
 { "session_uuid":"9a2678c3-64db-4bc1-abd4-605ad7702230",
 "path" :"/tmp/src/dir","local_id":1,
 "file_id":"47203042-bb57-487f-95df-ad614d0a3720",
 "status":"validating",
 "new_file":true, "error_code":0,
 "size":10000000,
 "start_offset":0,
 "bytes_written":10000000,
 "bytes_contiguous":0, "bytes_lost":0,
 "elapsed":0,"bytes_processed":0,
 "start_date":"2017-11-29T16:21:24Z",
 "checksum_type":"None"
 }],
"iteration_token":"0000000000000003",
"remaining_result_count":1,
"result_count":1
} }

b) Validate the files and update the "bytes_processed".

By updating the "bytes_processed", the GUI can display a progress bar:

curl -X PUT -u node_user:password -d '{ "validator_id": "validator_id",
 "files": [{ "session_uuid": "session_uuid", "file_id": "file_id",
 "status": "validating", "bytes_processed": bytes }] }'
 https://server_name:9092/services/rest/transfers/v1/files

Note: If a validator does not update the file status within the validation timeout, the file status is reset to
"to_be_validated" and the file is released from the validator so that the file can be validated by a different
validator. The default timeout is 5 minutes. To edit the validation timeout, run the following command:

 asconfigurator -x "set_central_server_data;validation_timeout,seconds"

c) Update the status of each file as validation completes or fails:

If a file passes validation, update its status to "completed":

curl -X PUT -u node_user:password -d '{ "validator_id": "validator_id",
 "files": [{ "session_uuid": "session_uuid", "file_id": "file_id",
 "status": "completed" }] }' https://server_name:9092/services/rest/
transfers/v1/files

If the file fails validation, update its status to "error" and provide an error code (as a number) and error
description (as a string):

curl -X PUT -u node_user:password -d '{ "validator_id": "validator_id",
 "files": [{ "session_uuid": "session_uuid", "file_id": "file_id",
 "status": "error", "error_code": error_number, "error_description":
 "error_string" }] }' https://server_name:9092/services/rest/transfers/
v1/files

 | Configure the Server from the Command Line | 73

For example, the body of a PUT request could contain the following information for three files:

{
 "validator_id": "my identifier",
 "files": [
 {
 "session_uuid": "1425c741-32bb-492d-b5e1-724c8bdb1fbf",
 "file_id": "11111111-11422dfb-5b8ed464-239783b8-09c78597",
 "status": "validating",
 "bytes_processed": 3
 },
 {
 "session_uuid": "1425c741-32bb-492d-b5e1-724c8bdb1fbf",
 "file_id": "22222222-11422dfb-5b8ed464-239783b8-09c78597",
 "status": "completed"
 },
 {
 "session_uuid": "1425c741-32bb-492d-b5e1-724c8bdb1fbf",
 "file_id": "33333333-11422dfb-5b8ed464-239783b8-09c78597",
 "status": "error",
 "error_code": 2,
 "error_description": "File not found"
 }
]
}

If all files validate and update successfully, HTTP 204 is returned. If one or more files have failed validation,
HTTP 200 is returned. For each failed file, an entry is added to the result. If another HTTP code is returned, then a
more general error, such as invalid JSON, has occurred.

3. Confirm that persistent storage is enabled (the default setting).

From the command line, run the following command:

 asuserdata -c

In the output, locate the value for "persistent_store". If it is not set to "enable", run the following
command:

 asconfigurator -x "set_central_server_data;persistent_store,enable"

4. Ensure that empty files and files that exist at the destination (and are skipped by the transfer session) are not
ignored.

From the command line, run the following command:

 asconfigurator -x
 "set_central_server_data;ignore_no_transfer_files,false"

If ignore_no_transfer_files is set to true, the workflow might fail when the transfer attempts to create
empty files on the destination and they are not validated.

5. Schedule the validation.

The validation can be scheduled for one or more users (files that are transferred to the server by those users are
validated), for one or more groups (files that are transferred to the server by users in the groups are validated), or
globally (all files that are transferred to the server for all users are validated).

From the command line, run the command corresponding to the scope of your configuration:

 asconfigurator -x
 "set_user_data;user_name,username;validation_file_stop,post_transfer"
 asconfigurator -x
 "set_group_data;group_name,groupname;validation_file_stop,post_transfer"

 | Configure the Server from the Command Line | 74

 asconfigurator -x "set_node_data;validation_file_stop,post_transfer"

Inline File Validation
If an executable file containing malicious code is uploaded to the server, the malicious code can subsequently be
executed by an external product that integrates with an Aspera product. Inline file validation is a feature that enables
file content to be validated while the file is in transit, as well as when the transfer is complete. The validation check is
made with a Lua script or with a REST call to an external URL. The mode of validation used (URL or Lua) and the
timing of the check are set inaspera.conf.

When inline file validation is enabled, the transfer is not reported as complete until the validation completes. An
alternative to inline file validation, out-of-transfer file validation, completes the transfer and then validates the file,
and can be substantially faster. For more information, see Out-of-Transfer File Validation on page 71.

Note: Inline file validation is not applied to transfers that fall back to HTTP. If all transfers require validation, use
out-of-transfer validation.

1. For Lua script validation, prepare your Lua script and specify the path to it.

For information about preparing a Lua script, see Inline File Validation with Lua Script on page 78.

To specify the path to the script in aspera.conf, run one of the following commands, depending on if your
script is base64 encoded:

 asconfigurator -x
 "set_user_data;user_name,username;validation_lua_script_base64,path"
 asconfigurator -x
 "set_user_data;user_name,username;validation_lua_script_path,path"

2. For URI validation, configure the REST service and set the URL.

Note: The code examples provided here are for an admin using a Java servlet deployed on an Apache web server,
but this process is generalizable to other programming languages and other servers.

a) Open web.xml and edit the <servlet> and <servlet_mapping> sections to provide the necessary
information for validation.

The <servlet-name> (URL handler) value is also configured in aspera.conf (in the next step) and any
custom code (such as file filtering, see Inline File Validation with URI on page 76).

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">

 <servlet>
 <servlet-name>SimpleValidator</servlet-name>
 <servlet-class>aspera.validation.SimpleValidator</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>SimpleValidator</servlet-name>
 <url-pattern>/SimpleValidator/validation/files</url-pattern>
 </servlet-mapping>
</web-app>

b) Set the URL in aspera.conf.

 asconfigurator -x "set_user_data;user_name,username;validation_uri,url"

 | Configure the Server from the Command Line | 75

Where url is the server's IP address and port, and the servlet name (URL handler) found in web.xml. This
adds the path to the <transfer> section of aspera.conf. For example:

<transfer>
<validation_uri>http://127.0.0.1:8080/SimpleValidator</validation_uri>
</transfer>

3. Schedule the validation.

You can schedule validation to occur at the following events:

• run at file start
• run at file stop
• run at session start (URL validation is not supported)
• run at session stop (URL validation is not supported)
• run when crossing file threshold

You can set a Lua script validation to run at one event and a URI validation to run at another, but you can define
only one Lua script or URL. The default setting for all events is none.

To set them from the command line, run the applicable command:

 asconfigurator -x
 "set_user_data;user_name,username;validation_file_start,{lua_script|uri}"
 asconfigurator -x "set_user_data;user_name,username;validation_file_stop,
{lua_script|uri}"
 asconfigurator -x
 "set_user_data;user_name,username;validation_session_start,lua_script"
 asconfigurator -x
 "set_user_data;user_name,username;validation_session_stop,lua_script"
 asconfigurator -x "set_user_data;user_name,username;validation_threshold,
{lua_script|uri}"

4. If you schedule validation at a file size threshold, set the threshold.

 asconfigurator -x
 "set_user_data;user_name,username;validation_threshold_kb,size"

5. Configure multi-threaded validation.

By default, inline validation is set to use 5 threads.

If the number of validation threads is not set to 1, then multiple threads may perform different types
of validations for different (or the same) files at the same time. In such a situation, the response of
a validation_file_stop at the end of a file download might come before the response of a
validation_threshold for the same file.

To set the number of validation threads, run the following command:

 asconfigurator -x
 "set_user_data;user_name,username;validation_threads,number"

For more information about the configuration parameters, see aspera.conf - Transfer Configuration on page 33
(defining values in aspera.conf)

For more information on the output of your inline validation, see Inline File Validation with URI on page 76 or
Inline File Validation with Lua Script on page 78.

 | Configure the Server from the Command Line | 76

Inline File Validation with URI
Inline file validation with URI can be customized to filter which files are validated.

Validation Requests and Returned Responses

During the inline validation process, ascp automatically generates a JSON-based request. The call is made with the
URL defined in aspera.conf. For example:

POST URL/validation/files HTTP/1.1
Content-type: application/json

The system then generates a JSON accepted or error response (OK or Bad Request). If a file validation fails, it
terminates the session with an error message from the URI.

• Sample JSON accepted response: The "file_encryption" field is only returned if server-side EAR is
present.

HTTP 200 OK
{
 "id" : "1111-2222-333",
 "file_encryption" : {
 "passphrase" : "supersecret"
 }
 "aspera_response_object_name" : {
 "startstop" : "start"
 "xfer_id" : "AAAA-BBBB",
 . . .
 "file_csum" : "a1000abf882",
 "file_csum_type" : "sha2-256"
 }
}

• Sample JSON error response:

HTTP 400 Bad Request
{
 "error" : {
 "code" : "1022",
 "message" : "The file fails validation"
 }
}

Custom Code for Including and Excluding Files

Administrators can include or exclude files by enabling whitelisting, blacklisting, or another method of their own
design. You can do this by creating custom code in the programming language of your choice, using a web server that
runs a REST service. (HST Server users have the option to use the web server associated with that installation).

The following is an example of custom code that creates a file blacklist, using a Java servlet deployed on an Apache
web server. Note that this code uses the servlet name SimpleValidator, which was defined in web.xml above.

package aspera.validation;

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

 | Configure the Server from the Command Line | 77

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.BufferedReader;
import java.io.IOException;

@WebServlet(name = "SimpleValidator")
public class SimpleValidator extends HttpServlet {
 protected void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 StringBuilder fileRequestJSON = new StringBuilder();
 BufferedReader reader = request.getReader();
 String line = "";
 Gson gson = new Gson();

 System.out.println("Got Validation request...");
 while (line != null) {
 line = reader.readLine();
 if (!(line == null)) {
 fileRequestJSON.append(line).append("\n");
 }
 }

 ValidationInput validationInput =
 gson.fromJson(fileRequestJSON.toString(), ValidationInput.class);

 System.out.println("FileData JSON: " + fileRequestJSON.toString());

 if (validationInput.file != null &&
 validationInput.file.endsWith(".sh")
 || validationInput.file.endsWith(".exe")) {

 JsonObject innerObject = new JsonObject();
 innerObject.addProperty("message", "Cannot transfer executable
 file!!");
 innerObject.addProperty("code", 1);

 JsonObject jsonObject = new JsonObject();
 jsonObject.add("error", innerObject);

 response.getOutputStream().println(jsonObject.toString());

 response.setStatus(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }
 else {

 JsonObject jsonObject = new JsonObject();
 jsonObject.addProperty("success", true);
 jsonObject.addProperty("data", "File is ok to transfer");
 jsonObject.addProperty("code", 1);
 response.getOutputStream().println(jsonObject.toString());

 response.setStatus(HttpServletResponse.SC_OK);
 }
 return;
 }
}

 | Configure the Server from the Command Line | 78

Inline File Validation with Lua Script
To use a Lua script for inline file validation, the administrator creates a base-64 encoded Lua action script and sets the
path to that script in the <transfer> section of aspera.conf. During the inline validation, ascp automatically
generates a request; the parameters for the Lua call are passed to a Lua script defined in aspera.conf.

The parameters for Lua calls are passed to Lua scripts by using the array 'env_table'. The following is an
example request body:

env_table["startstop"] = "running"
env_table["xfer_id"] = "AAAA-BBBB"
env_table["session_id"] = "1111-2222"
env_table["host"] = "10.0.258.12"
env_table["client_ip"] = "10.0.125.04"
env_table["user"] = "admin"
env_table["userid"] = 24
env_table["direction"] = "send"
env_table["target_rate_kbps"] = 0
env_table["min_rate_kbps"] = 0
env_table["rate_policy"] = "fair"
env_table["cipher"] = "aes-128"
env_table["cookie"] = "xyz"
env_table["manifest_file"] = "/data/manifests/aspera-transfer-1234.txt"
env_table["file"] = "/data/home/luke/test.mpg"
env_table["size"] = 1000000
env_table["start_byte"] = 0
env_table["bytes_written"] = 0
env_table["tags"] = "tags"
env_table["file_name_encoding"] = "utf8"
env_table["file_csum"] = "a1000abf882"
env_table["file_csum_type"] = "sha2-256"

Lua Request Body Parameters and Values

Field Description Values

"startstop" Sets the type of validation start, stop, or running

"xfer_id" Value used to identify a transfer
session

String

"session_id" Value used to identify a validation
session

String

"host" Server hostname or IP address Hostname or IP address

"client_ip" Client IP address IP address

"user" SSH account login name String

"user_id" Value used to identify the user String

"direction" Direction of transfer (send or
receive)

send or recv

"target_rate_kbps" Target rate (in kbps) for file transfer
with ascp

Integer

"min_rate_kbps" Minimum rate (in kbps) for file
transfer with ascp

Integer

 | Configure the Server from the Command Line | 79

Field Description Values

"rate_policy" Defines the ascp rate policy. This
value is taken from the default
configuration in aspera.conf, if
not defined here.

fixed, fair, high, or low

"cipher" The encryption cipher for file data. String; AES128, ANY, or NONE

"cookie" The cookie sent to the client system String

"manifest_file" Path to manifest file, which contains
a list of transferred files. The
command for this in ascp is --file-
manifest-path=file_path

Filepath

"file" Path to file being validated Filepath

"size" Allowable file size Integer (up to 64-bit)

"start_byte" Integer

"bytes_written" Integer

"tags" The JSON request passes the
supplied tag values to ascp,
which in turn passes the tags to the
validator.

"file_name_encoding" String

"file_csum" File checksum String

"file_csum_type" File checksum type md5, sha1, or any

The values that are returned from Lua can be used to indicate validation success, validation failure, the script error, or
to change the file destination:

Status Lua return value

Validation success No value or LRET_OK

Change file destination LRET_REDIRECT_DST followed by a new destination
path for the file. This option is only available at file
transfer start, returning it at any other state results in an
error.

Validation failure LRET_INVALID, optionally followed by a failure
description string

Script error LRET_ERROR followed by an error number or error
description string

Lua File Interfaces

Three Lua file interfaces allow Lua scripts to reference files: lua_stat, lua_file_delete, and lua_rename.

•
lua_stat("file_path")

Used to gather metadata for the single file specified by file_path, where file_path is relative to the docroot, if
defined. Metadata output include the following:

stat_data["exists"] = "true" | "false"

 | Configure the Server from the Command Line | 80

stat_data["size"] = file_size
stat_data["blocks"] = file blocks
stat_data["blocksize"] = block_size
stat_data["type"] = "Invalid" | "S_IFDIR" | "S_IFREG" | "S_IFCHR"
 |"S_IFBLK" | "S_IFIFO" | "S_IFSOCK" |
 "S_IFLNK" | "Block stream" | "Custom" | "Unknown"
stat_data["mode format"] = "Windows format" | "Linux format"
stat_data["mode"] = filemode (format based on mode format above)
stat_data["uid"] = uid
stat_data["gid"] = gid
stat_data["ctime"] = ctime
stat_data["mtime"] = mtime
stat_data["atime"] = atime

•
lua_file_delete("file_path")

Deletes the single file specified by file_path, where file_path is relative to the docroot, if defined.
•

lua_rename("old_file_path","new_file_path")

Renames the file specified by old_file_path with the new name specified by new_file_path, both of which are
relative to the docroot, if defined.

Lua Logging Interface

You can output simple text strings (format strings are not supported) to the Aspera logs using the ascp log
interfaces. For example, to log when the Lua script started, enter the following line in a Lua script:

lua_log("Lua script started")

This produces the following log entry:

xxxxxx LOG lua: Lua script started

The following ascp logging functions are supported:

• as_log

• as_err

• as_dbg1

• as_dbg2

• as_dbg3

• as_dbg4

To use the ascp log functions in your Lua script, replace as with lua.

Miscellaneous Lua Interfaces

•
lua_override_ear_secret("secret")

Override the server-side encryption-at-rest (EAR) secret that is set in aspera.conf with the specified secret.

 | File Pre- and Post-Processing (Prepost) | 81

File Pre- and Post-Processing (Prepost)

HST Server can run file processing scripts that run before or after a transfer session or file transfer.

Setting Up Pre/Post Processing
HST Server can be configured to run scripts that are triggered by session start, session stop, file start, and file stop.

Your Aspera server can automatically execute a shell script from a pre-defined location:

/opt/aspera/var/

The script is executed as a result of four transfer events:

• Session start
• Session end
• Start of each individual file transfer in the session
• End of each individual file transfer in the session

The aspera-prepost script can also execute additional shell scripts, Perl scripts, native executables, and Java
programs.

Environment Variables: Aspera has several environment variables for aspera-prepost that you can use in
your own custom scripts. These environment variables are described in detail in Pre/Post Variables on page 82.
Depending on usage, pre- and post-processing may consume a large amount of system resources. Be sure to evaluate
your system performance and apply this feature appropriately.

CAUTION: When creating pre- and post-processing scripts, unsafe scripts can compromise a server. As
with CGI scripts, you should take precautions in testing a pre/post script before placing it into use (such as
taint checking and ensuring proper quotes). You should also be aware of user permissions; pre/post scripts
run as the user who authenticates the transfer. To prevent a pre/post script from performing an action with
elevated or special user permissions, the script needs to check the $USER variable.

To set up pre/post processing for your Aspera transfer product:

1. Set up the shell script file.

Locate the following file:

/opt/aspera/var/aspera-prepost.disable

This file runs the Perl script aspera-notif.pl, which is an email notification script that sends emails
(according to user-defined filters) to one or more recipients. Filters and lists are defined in the Aspera
configuration file aspera.conf, which is located in /opt/aspera/etc.

Copy the contents of aspera-prepost.disable into a new file, and name it as follows:

/opt/aspera/var/aspera-prepost

Ensure that execute privileges are enabled (at least r-xr-xr-x).

2. Create your scripts.

The pre/post processing script, aspera-prepost, can contain the pre/post processing steps, as well as execute
other programs. Often, aspera-prepost checks for certain conditions (based on environment variables), and
then calls a specific external executable based on those conditions.

 | File Pre- and Post-Processing (Prepost) | 82

aspera-prepost is executed as a result of a the start and end of a transfer session, as well as the start and end
of the transfer of an individual file in the session. Use the variables TYPE and STARTSTOP to specify a particular
state. For the complete list of all variables, see Pre/Post Variables on page 82.

3. Include custom scripts in aspera-prepost.

Custom scripts can be written directly into the script file aspera-prepost. For example, to add the custom
script script1.pl to your pre/post script, insert the following line (into aspera-prepost):

...
perl script1.pl
...

Pre/Post Variables
HST Server supports an extensive set of variables that can be used in prepost scripts.

The following tables list all pre/post variables for setting up pre- and post-processing. Some can be applied only to
sessions, some only to files, and some to both sessions and files.

Pre/post variable considerations:

• Pre/post variables are case-sensitive.
• Pre/post variables that can be arbitrarily long (values marked with * below) are truncated by prepost scripts.

For Sessions and Files

Variable Description Values Example

COOKIE The user-defined cookie string. string* "$COOKIE" == cookie-string

DIRECTION The transfer direction. • send
• recv

"$DIRECTION" == send

ERRCODE The error code. string "$ERRCODE" == 1

ERRSTR The error string. string "$ERRSTR" == FASP error

MANIFESTFILE The full path to the manifest file. string* "$MANIFESTFILE" == /log

PEER The peer name or IP address. string or valid
IPv4 address

"$PEER" == 10.0.0.1

SECURE Transfer encryption. • yes
• no

"$SECURE" == no

SESSIONID The session id. string "$SESSIONID" == 1

STARTSTOP The status start or stop. • Start
• Stop

"$STARTSTOP" == Start

STATE The transfer state. • started
• success
• failed

"$STATE" == success

TYPE The event type. • Session
• File

"$TYPE" == Session

 | File Pre- and Post-Processing (Prepost) | 83

Variable Description Values Example

USER The user name string "$USER" == aspera_user_1

USERID The user ID string "$USERID" == 501

USERSTR The user string, such as additional
variables.

string* "$USERSTR" == -q

For Sessions

Variable Description Values Example

FILE1 The first file. string* "$FILE1" == first-file

FILE2 The second file. string* "$FILE2" == second-file

FILECOUNT The number of files. positive
integer

"$FILECOUNT" >= 5

FILELAST The last file. string* "$FILELAST" == last-file

LICENSE The license account and serial number. string "$LICENSE" == license-string

MINRATE The initial minimum rate, in Kbps. positive
integer

"$MINRATE" == 50

PEERLICENSE The peer's license account and serial
number.

string "$PEERLICENSE" == license-
string

RATEMODE The transfer policy. • adapt
• fixed

"$RATEMODE" == adapt

SOURCE The full path of the source file. string* "$SOURCE"== /tmp

TARGET The full path of the target directory. string* "$TARGET" == .

TARGETRATE The initial target rate, in Kbps. positive
integer

"$TARGETRATE" == 100

TOTALBYTES The total bytes transferred. positive
integer

"$TOTALBYTES" >=
100000000

TOTALSIZE The total size of files being transferred
in bytes.

positive
integer

"$TOTALSIZE" >= 500000000

For Files

Variable Description Values Example

DELAY The measured network delay, in ms. positive
integer

"$DELAY" <= 1

FILE The file name. string* "$FILE" == file-name

FILE_CSUM Destination checksum of the most
recently transferred file.

string "$FILE_CSUM" == checksum

LOSS The network loss in percentage. double-digit
fixed point
value

"$LOSS" >= 5.00

 | File Pre- and Post-Processing (Prepost) | 84

Variable Description Values Example

OVERHEAD The total number of duplicate packets. positive
integer

"$OVERHEAD" >= 1

RATE The transfer rate in Kbps. double-digit
fixed point
value

"$RATE" >= 10.00

REXREQS The total number of retransmission
requests.

positive
integer

"$REXREQS" >= 3

SIZE The file size in bytes. positive
integer

"$SIZE" >= 5000000

STARTBYTE The start byte if resumed. positive
integer

"$STARTBYTE" >= 100000

Pre/Post Script Examples
The following pre-processing and post-processing script examples demonstrate how Aspera prepost environment
variables are used to achieve different types of processing.

These examples use bash syntax. To run these examples on your own system, do the following:

• Save the example to /opt/aspera/var/myscript.sh.
• Ensure that the script file is executable -- for example:

$ chmod +x /opt/aspera/var/myscript.sh

• Add the line /opt/aspera/var/myscript.sh to /opt/aspera/var/aspera-prepost to call
myscript.sh.

• Be sure there is no exit condition in aspera-prepost before you call your script.

1. Shell - Change file and directory permissions.

In the shell script, change file and directory permissions after receiving, and log into the file /tmp/p.log:

#!/bin/bash
if [$TYPE == File]; then
 if [$STARTSTOP == Stop]; then
 echo "The file is: $FILE" >> /tmp/p.log
 chmod 777 $FILE
 fi
fi

2. Shell - Forward files to another computer.

In the shell script, transfer received files to a third computer 10.10.10.10, and remove the local copy.

Important: For this example to work properly, the server's host key must be cached.

#!/bin/bash
TARGET=aspera@10.10.10.10:/tmp

 | Email Notifications | 85

RATE=10m
export ASPERA_SCP_PASS=aspera
if [$TYPE == File]; then
 if [$STARTSTOP == Stop]; then
 if [$STATE == success]; then
 if [$DIRECTION == recv]; then
 logger -plocal2.info "Move file $FILE to $TARGET"
 ascp -T -o RemoveAfterTransfer=yes -l $RATE $FILE $TARGET
 fi
 fi
 fi
fi

3. Shell - Create a log of successfully transferred files.

In the shell script, store successfully transferred files as a list into the file /tmp/aspera.transfer.log:

#!/bin/bash
if [$TYPE == File]; then
 if [$STARTSTOP == Stop]; then
 if [$SIZE -gt 0]; then
 if [`expr $SIZE - $STARTBYTE` -gt 0]; then
 echo `date` >> /tmp/aspera.transfer.log
 echo "$STATE $FILE $SIZE bits transferred" >> /tmp/
aspera.transfer.log
 fi
 fi
 fi
fi

Email Notifications

Email notifications are a special type of prepost processing that can be configured on HST Server .

Setting Up Email Notifications
The email notification feature is a built-in pre- and post-processing application that generates customized emails
based on transfer events. To enable email notifications, HST Server must be configured for pre/post-processing and
have network access to an open SMTP relay server.

Prerequisites:

• HST Server configured for pre- and post-processing. For instructions, see Setting Up Pre/Post Processing on page
81.

• An open SMTP server that you can reach on your network and that does not use any external authentication or
SSL.

Setting up Email Notifications:

1. Prepare the email notification configuration template.

Open the aspera.conf file:

/opt/aspera/etc/aspera.conf

Locate or create the section <EMAILNOTIF>...</EMAILNOTIF>:

<CONF version="2">
 ...

 | Email Notifications | 86

 <EMAILNOTIF>
 <MAILLISTS
 mylist = "asperausers@example.com, admin@example.com"
 myadminlist = "admin@example.com"
 />

 <FILTER
 MAILLISTS = "mylist"
 TARGETDIR = "/content/users"
 />

 <MAILCONF
 DEBUG = "0"
 FROM = "asperaserver@example.com"
 MAILSERVER = "mail.example.com"
 SUBJECT = "Transfer %{SOURCE} %{TARGET} - %{STATE}"
 BODYTEXT =
 "Aspera transfer: %{STATE}%{NEWLINE}%{TOTALBYTES} bytes in
 %{FILECOUNT} files: %{FILE1}, %{FILE2}, ...%{FILELAST}."
 />
 </EMAILNOTIF>
</CONF>

2. Set up the basic notification function in <MAILCONF/>

<MAILCONF/> defines the general email configuration, including the sender, the mail server, and the body text.
In the SUBJECT and BODYTEXT options, the pre- and post-processing variables can be used with the format
%{variable}, such as %{STATE} for the variable STATE. For the complete list of the variables, see Pre/Post
Variables on page 82.

MAILCONF Field Description Values Example

FROM The email address to
send notifications from.
(Required)

a valid email
address

FROM="admin@example.com"

MAILSERVER The outgoing mail server
(SMTP). (Required)

A valid URL MAILSERVER="mail.example.com"

SUBJECT General subject of the email. text string SUBJECT="Transfer:%{STATE}"

BODYTEXT General body of the email. text string BODYTEXT="Transfer has
%{STATE}."

DEBUG Print debugging info and
write to the logs.

"0" = off, "1"
= on

DEBUG="0"

3. Create mailing lists in <MAILLISTS />.

<MAILLISTS /> defines sets of mailing lists. For example, to create the following mailing list:

Item Value

Mailing list name list1

Emails to include janedoe@companymail.com, johndoe@companymail.com

Specify the mailing list in the following form:

<MAILLISTS
 list1 = "janedoe@companymail.com, johndoe@companymail.com"
/>

4. Set up mailing filters in <FILTER />.

 | Email Notifications | 87

<FILTER /> defines email notification conditional filters. When the conditions are met, a customized email is
sent to the indicated mailing list. Multiple filters are allowed.

The values in the filter are matched as substrings, for example, USER = root means the value would match
strings like root, treeroot, and root1. The pre- and post-processing variables can be used with the format
%{variable}, such as %{STATE} for the variable STATE. For the complete list of the variables, see Pre/Post
Variables on page 82.

FILTER Field Description Values Example

MAILLISTS Required The email lists to send to.
Separate lists with comma (,).

text string MAILLISTS="mylist"

USER Login name of the user who
transferred the files.

text string USER="aspera_user_1"

SRCIP Source IP of the files. a valid IPv4
address

SRCIP="10.0.1.1"

DESTIP Destination IP of the files. a valid IPv4
address

DESTIP="10.0.1.5"

SOURCE The top-level directories and files
that were transferred.

text string SOURCE="/folder1"

TARGETDIR The directory that the files were sent
to.

text string TARGETDIR="/folder2"

SUBJECTPREFIX The email subject, preceded by the
SUBJECT in <MAILCONF />.

text string SUBJECTPREFIX="Sub"

BODYPREFIX The email body, preceded by the
BODYTEXT in <MAILCONF />.

text string BODYPREFIX="Txt"

TOTALBYTESOVER Send email when total bytes
transferred is over this number. This
only applies to emails sent at the end
of a transfer.

positive
integer

TOTALBYTESOVER="9000"

SENDONSESSION Send email for the entire session. yes / no SENDONSESSION="yes"

SENDONSTART Send email when transfer is started.
This setting is dependent on
SENDONSESSION="yes".

yes / no SENDONSTART="yes"

SENDONSTOP Send email when transfer is stopped.
This setting is dependent on
SENDONSESSION="yes".

yes / no SENDONSTOP="yes"

SENDONFILE Send email for each file within a
session.

yes / no SENDONFILE="yes"

Email Notification Examples
Use the following examples to craft your own email notifications.

1. Notify a specified mailing list when a transfer session is completed.

<EMAILNOTIF>
 <MAILLISTS
 list1 ="janedoe@companyemail.com, johndoe@companyemail.com"
 />

 | Email Notifications | 88

 <MAILCONF
 FROM="Aspera Notifier <admin@companyemail.com>"
 MAILSERVER="smtp.companyemail.com"
 BODYTEXT="%{NEWLINE}Powered by Aspera Inc."
 />

 <FILTER
 MAILLISTS="list1"
 SENDONSESSION="yes"
 SUBJECTPREFIX="Aspera Transfer - %{USER} "
 BODYPREFIX="Status: %{STATE}%{NEWLINE} File Count: %{FILECOUNT}"
 />
</EMAILNOTIF>

2. Notify the specified mail list when a session is initiated and completed.

<EMAILNOTIF>
 <MAILLISTS
 list1 ="janedoe@companyemail.com, johndoe@companyemail.com"
 />
 <MAILCONF
 FROM="Aspera Notifier <admin@companyemail.com>"
 MAILSERVER="smtp.companyemail.com"
 SUBJECT=" by %{USER}"
 BODYTEXT="%{NEWLINE}Powered by Aspera Inc."
 />

 <FILTER
 MAILLISTS="list1"
 SENDONSTART="yes"
 SENDONSTOP="no"
 SUBJECTPREFIX="Transfer Started"
 BODYPREFIX="Source: %{PEER}%{NEWLINE} Target: %{TARGET}"
 />

 <FILTER
 MAILLISTS="list1"
 SENDONSTART="no"
 SENDONSTOP="yes"
 SUBJECTPREFIX="Transfer Completed"
 BODYPREFIX="
 Status: %{STATE}%{NEWLINE}
 File Count: %{FILECOUNT}%{NEWLINE}
 Source: %{PEER}%{NEWLINE}
 Target: %{TARGET}%{NEWLINE}
 Bytes Transferred: %{TOTALBYTES} Bytes%{NEWLINE}
 "
 />
</EMAILNOTIF>

3. Send different notifications for regular transfers and for IBM Aspera Sync transfers.

In the example below, when Aspera Sync triggers a transfer (assuming only Aspera Sync uses the folder /sync-
folder), an email message is sent to "mediaGroup". When a regular transfer occurs (files are sent to /upload),
a different notification is sent to "mediaLead" and "adminGroup".

<EMAILNOTIF>
 <MAILLISTS
 mediaGroup ="johndoe@companyemail.com, janedoe@companyemail.com"
 mediaLead ="janedoe@companyemail.com"
 adminGroup ="admin@companyemail.com, root@companyemail.com"
 />

 | ascp: Transferring from the Command Line with Ascp | 89

 <MAILCONF
 FROM="Aspera Notifier <admin@companyemail.com>"
 MAILSERVER="smtp.companyemail.com"
 BODYTEXT="%{NEWLINE}Powered by Aspera Inc."
 />

 <FILTER
 MAILLISTS="mediaGroup"
 SENDONSESSION="yes"
 DESTIP="192.168.1.10"
 TARGETDIR="/sync-folder"
 SUBJECTPREFIX="Aspera Sync #1 - From %{PEER}"
 BODYPREFIX="Status: %{STATE}%{NEWLINE} File Count: %{FILECOUNT}"
 />

 <FILTER
 MAILLISTS="mediaLead,adminGroup"
 SENDONSESSION="yes"
 TARGETDIR="/upload"
 SUBJECTPREFIX="Transfer - %{USER}"
 BODYPREFIX="
 Status: %{STATE}%{NEWLINE}
 Source: %{PEER}%{NEWLINE}
 File Count: %{FILECOUNT}%{NEWLINE}
 Bytes Transferred: %{TOTALBYTES} Bytes%{NEWLINE}
 "
 />
</EMAILNOTIF>

ascp: Transferring from the Command Line with Ascp

Ascp is a scriptable FASP transfer binary that enables you to transfer to and from Aspera transfer servers to which
you have authentication credentials. Transfer settings are customizable and can include file manipulation on the
source or destination, filtering of the source content, and client-side encryption-at-rest.

Ascp Command Reference
The ascp executable is a command-line FASP transfer program. This reference describes ascp syntax, command
options, and supported environment variables.

For examples of ascp commands, see the following topics:

• Ascp General Examples on page 104
• Ascp File Manipulation Examples on page 106
• Ascp Transfers with Object Storage and HDFS on page 108

Another command-line FASP transfer program, Ascp 4 (ascp4), is optimized for transfers of many small files. It has
many of the same capabilities as ascp, as well as its own features. For more information, see Introduction to Ascp 4
on page 134 and Comparison of Ascp and Ascp 4 Options on page 129.

Ascp Syntax

ascp options [[username@]src_host:]source1[source2 ...]
 [[username@]dest_host:]dest_path

username

 | ascp: Transferring from the Command Line with Ascp | 90

The username of the Aspera transfer user can be specified as part of the source or destination,
whichever is the remote server. It can also be specified with the --user option. If you do not
specify a username for the transfer, the local username is authenticated by default.

Note: If you are authenticating on a Windows computer as a domain user, the transfer server
strips the domain from the username. For example, Administrator is authenticated rather than
DOMAIN\Administrator. For this reason, you must specify the domain explicitly.

src_host

The name or IP address of the computer where the files or directories to be transferred reside.

source

The file or directory to be transferred. Separate multiple arguments with spaces.

dest_host

The name or IP address of the computer where the source files or directories are to be transferred.

dest_path

The destination directory where the source files or directories are to be transferred.

• If the source is a single file, the destination can be a filename. However, if there are multiple
source arguments, the destination must be a directory.

• To transfer to the transfer user's docroot, specify "." as the destination.
• If the destination is a symbolic link, then the file or directory is written to the target of the

symbolic link.

Specifying Files, Directories, and Paths

• Specify paths on the remote computer relative to the transfer user's docroot. If the user has a restriction instead of
a docroot, specify the full path, which must be allowed by the restriction.

• Avoid the following characters in file and directory names: / \ " : ' ? > < & * |
• Specify paths with forward-slashes, regardless of the operating system.
• If directory or file arguments contain special characters, specify arguments with single-quotes (' ') to avoid

interpretation by the shell.

URI paths: URI paths are supported, but with the following restrictions:

• If the source paths are URIs, they must all be in the same cloud storage account. No docroot (download), local
docroot (upload), or source prefix can be specified.

• If a destination path is a URI, no docroot (upload) or local docroot (download) can be specified.
• The special schemes stdio:// and stdio-tar:// are supported on the client side only. They cannot be used

for specifying an upload destination or download source.
• If required, specify the URI passphrase as part of the URI or set it as an environment variable

(ASPERA_SRC_PASS or ASPERA_DST_PASS, depending on the transfer direction).

UNC paths: If the server is Windows and the path on the server is a UNC path (a path that points to a shared
directory or file on Windows), it can be specified in an ascp command using one of the following conventions:

• As an UNC path that uses backslashes (\): If the client side is a Windows computer, the UNC path can be used
with no alteration. For example, \\192.168.0.10\temp. If the client is not a Windows computer, every
backslash in the UNC path must be replaced with two backslashes. For example, \\\\192.168.0.10\
\temp.

• As an UNC path that uses forward slashes (/): Replace each backslash in the UNC path with a forward slash. For
example, if the UNC path is \\192.168.0.10\temp, change it to //192.168.0.10/temp. This format
can be used with any client-side operating system.

Testing paths: To test ascp transfers, use a faux:// argument in place of the source or target path to send
random data without writing it to disk at the destination. For more information, see Testing and Optimizing Transfer
Performance on page 326. For examples, see Ascp General Examples on page 104.

 | ascp: Transferring from the Command Line with Ascp | 91

Required File Access and Permissions

• Sources (for downloads) or destinations (for uploads) on the server must be in the transfer user's docroot or match
one of the transfer user's file restrictions, otherwise the transfer stops and returns an error.

• The transfer user must have sufficient permissions to the sources or destinations, for example write access for the
destination directory, otherwise the transfer stops and returns a permissions error.

• The transfer user must have authorization to do the transfer (upload or download), otherwise the transfer stops and
returns a "management authorization refused" error.

• Files that are open for write by another process on a Windows source or destination cannot be transferred and
return a "sharing violation" error. On Unix-like operating systems, files that are open for write by another process
are transferred without reporting an error, but may produce unexpected results depending on what data in the file
is changed and when relative to the transfer.

Environment Variables

The following environment variables can be used with the ascp command. The total size for environment variables
depends on your operating system and transfer session. Aspera recommends that each environment variable value
should not exceed 4096 characters.

ASPERA_DST_PASS=password

The password to authenticate a URI destination.

ASPERA_LOCAL_TOKEN=token

A token that authenticates the user to the client (in place of SSH authentication).

Note: If the local token is a basic or bearer token, the access key settings for cipher and
preserve_time are not respected and the server settings are used. To set the cipher and timestamp
preservation options as a client, set them in the command line.

ASPERA_PROXY_PASS=proxy_server_password

The password for an Aspera Proxy server.

ASPERA_SCP_COOKIE=cookie

A cookie string that you want associated with transfers.

ASPERA_SCP_DOCROOT=docroot

The transfer user docroot. Equivalent to using --apply-local-docroot when a docroot is set
in aspera.conf.

ASPERA_SCP_FILEPASS=password

The passphrase to be used to encrypt or decrypt files. For use with --file-crypt.

ASPERA_SCP_KEY="-----BEGIN RSA PRIVATE KEY..."

The transfer user private key. Use instead of the -i option.

ASPERA_SCP_PASS=password

The password for the transfer user.

ASPERA_SCP_TOKEN=token

The transfer user authorization token. Overridden by -W.

ASPERA_SRC_PASS=password

The password to authenticate to a URI source.

Ascp Options
-6

Enable IPv6 address support. When specifying an IPv6 numeric
host for src_host or dest_host, write it in brackets. For example,

 | ascp: Transferring from the Command Line with Ascp | 92

username@[2001:0:4137:9e50:201b:63d3:ba92:da]:/path or --
host=[fe80::21b:21ff:fe1c:5072%eth1].

-@ range_start:range_end

Transfer only part of a file: range_start is the first byte to send, and range_end is the last. If either
position is unspecified, the file's first and last bytes (respectively) are assumed. This option only
works for downloads of a single file and does not support transfer resume.

-A, --version

Display version and license information.

--apply-local-docroot

Apply the local docroot that is set in aspera.conf for the transfer user. Use to avoid entering
object storage access credentials in the command line. This option is equivalent to setting the
environment variable ASPERA_SCP_DOCROOT.

-C nodeid:nodecount

Enable multi-session transfers (also known as parallel transfers) on a multi-node/multi-core system.
A node ID (nodeid) and count (nodecount) are required for each session. nodeid and nodecount can
be 1-128, but nodeid must be less than or equal to nodecount, such as 1:2, 2:2. Each session must
use a different UDP port specified with the -O option. Large files can be split across sessions, see
--multi-session-threshold. For more information, see Multi-Session Transfers on page
111.

-c cipher

Encrypt in-transit file data using the specified cipher. Aspera supports three sizes of AES cipher
keys (128, 192, and 256 bits) and supports two encryption modes, cipher feedback mode (CFB) and
Galois/counter mode (GCM). The GCM mode encrypts data faster and increases transfer speeds
compared to the CFB mode, but the server must support and permit it.

Cipher rules

The encryption cipher that you are allowed to use depends on the server configuration and the
version of the client and server:

• When you request a cipher key that is shorter than the cipher key that is configured on the
server, the transfer is automatically upgraded to the server configuration. For example, when the
server setting is AES-192 and you request AES-128, the server enforces AES-192.

• When the server requires GCM, you must use GCM (requires version 3.9.0 or newer) or the
transfer fails.

• When you request GCM and the server is older than 3.8.1 or explicity requires CFB, the transfer
fails.

• When the server setting is "any", you can use any encryption cipher. The only exception is when
the server is 3.8.1 or older and does not support GCM mode; in this case, you cannot request
GCM mode encryption.

• When the server setting is "none", you must use "none". Transfer requests that specify an
encryption cipher are refused by the server.

Cipher Values

Value Description Support

aes128
aes192
aes256

Use the GCM or CFB encryption
mode, depending on the server
configuration and version (see cipher
negotiation matrix).

All client and server versions.

aes128cfb
aes192cfb

Use the CFB encryption mode. Clients version 3.9.0 and newer, all
server versions.

 | ascp: Transferring from the Command Line with Ascp | 93

Value Description Support

aes256cfb

aes128gcm
aes192gcm
aes256gcm

Use the GCM encryption mode. Clients and servers version 3.9.0 and
newer.

none Do not encrypt data in transit. Aspera
strongly recommends against using
this setting.

All client and server versions.

Client-Server Cipher Negotiation

The following table shows which encryption mode is used depending on the server and client
versions and settings:

Server, v3.9.0+

AES-XXX-GCM

Server, v3.9.0+

AES-XXX-CFB

Server, v3.9.0+

AES-XXX

Server, v3.8.1 or
older

AES-XXX

Client, v3.9.0+

AES-XXX-GCM

GCM server refuses
transfer

GCM server refuses
transfer

Client, v3.9.0+

AES-XXX-CFB

server refuses
transfer

CFB CFB CFB

Client, v3.9.0+

AES-XXX

GCM CFB CFB CFB

Client, v3.8.1 or
older

AES-XXX

server refuses
transfer

CFB CFB CFB

--check-sshfp=fingerprint

Compare fingerprint to the server SSH host key fingerprint that is set with
<ssh_host_key_fingerprint> in aspera.conf. Aspera fingerprint convention is to use
a hex string without the colons; for example, f74e5de9ed0d62feaf0616ed1e851133c42a0082. For
more information on SSH host key fingerprints, see Securing Your SSH Server on page 14.

Note: If HTTP fallback is enabled and the transfer "falls back" to HTTP, this option enforces server
SSL certificate validation (HTTPS). Validation fails if the server has a self-signed certificate; a
properly signed certificate is required.

-D | -DD | -DDD

Log at the specified debug level. With each D, an additional level of debugging information is
written to the log.

-d

Create the destination directory if it does not already exist. This option is automatically applied to
uploads to object storage.

--delete-before-transfer

Before transfer, delete any files that exist at the destination but not also at the source. The source
and destination arguments must be directories that have matching names. Do not use with multiple

 | ascp: Transferring from the Command Line with Ascp | 94

sources, keepalive, URI storage, or HTTP fallback. The asdelete tool provides the same
capability.

--dest64

Indicate that the destination path or URI is base64 encoded.

-E 'pattern'

Exclude files or directories from the transfer based on matching the specified pattern to file
names and paths (to exclude files by modification time, use --exclude-newer-than or --
exclude-older-than). Use the -N option (include) to specify exceptions to -E rules. Rules
are applied in the order in which they are encountered, from left to right. The following symbols can
be used in the pattern:

• * (asterisk) represents zero or more characters in a string, for example *.tmp matches .tmp
and abcde.tmp.

• ? (question mark) represents a single character, for example t?p matches tmp but not temp.

For details and examples, see Using Filters to Include and Exclude Files on page 116.

Note: When filtering rules are found in aspera.conf, they are applied before rules given on the
command line (-E and -N).

-e prepost_script

Run the specified pre-post script as an alternate to the default aspera-prepost script. Specify
the full path to the pre-post script. Use pre-post scripts to run custom commands such as shell
scripts, Perl scripts, Windows batch files, and executable binaries that can invoke a variety of
environment variables. For instructions, see File Pre- and Post-Processing (Prepost) on page 81.

--exclude-newer-than=mtime, --exclude-older-than=mtime

Exclude files (but not directories) from the transfer, based on when the file was last modified.
Positive mtime values are used to express time, in seconds, since the original system time (usually
1970-01-01 00:00:00). Negative mtime values (prefixed with "-") are used to express the number of
seconds prior to the current time.

-f config_file

Read Aspera configuration settings from config_file rather than aspera.conf(the default).

--file-checksum=hash

Enable checksum reporting for transferred files, where hash is the type of checksum to calculate:
sha1, md5, sha-512, sha-384, sha-256, or none (the default). When the value is none, the
checksum that is configured on the server, if any, is used. For more information about checksum
reporting, see Reporting Checksums on page 66 .

Important: When checksum reporting is enabled, transfers of very large files (>TB) take a long
time to resume because the entire file must be reread.

--file-crypt={encrypt|decrypt}

Encrypt files (when sending) or decrypt files (when receiving) for client-side encryption-at-rest
(EAR). Encrypted files have the file extension .aspera-env. This option requires the encryption/
decryption passphrase to be set with the environment variable ASPERA_SCP_FILEPASS. If a
client-side encrypted file is downloaded with an incorrect password, the download is successful, but
the file remains encrypted and still has the file extension .aspera-env. For more information,
see Client-Side Encryption-at-Rest (EAR) on page 128.

--file-list=file

Transfer all source files and directories listed in file. Each source item is specified on a separate line.
UTF-8 file format is supported. Only the files and directories are transferred. Path information is not
preserved at the destination. To read a file list from standard input, use "-" in place of file.

 | ascp: Transferring from the Command Line with Ascp | 95

For example, if list.txt contains the following list of sources:

/tmp/code/compute.php
doc_dir
images/iris.png
images/rose.png

and the following command is run:

 ascp --file-list=list.txt --mode=send --user=username --
host=ip_addr .

then the destination, in this case the transfer user's docroot, will contain the following:

compute.php
doc_dir (and its contents)
iris.png
rose.png

Restrictions:

• The command line cannot use the user@host:source syntax. Instead, specify this
information with the options --mode, --host, and --user.

• Paths specified in the file list cannot use the user@host:source syntax.
• Because multiple sources are being transferred, the destination must be a directory.
• Only one --file-list or --file-pair-list option is allowed per ascp session. If

multiple lists are specified, only the last one is used.
• Only files and directories specified in the file list are transferred; any sources specified on the

command line are ignored.
• If the source paths are URIs, the size of the file list cannot exceed 24 KB.

To create a file list that also specifies destination paths, use --file-pair-list.

--file-manifest={none|text}

Generate a list of all transferred files when set to text. Requires --file-manifest-path to
specify the location of the list. (Default: none)

--file-manifest-path=directory

Save the file manifest to the specified location when using --file-manifest=text. File
manifests must be stored locally. For cloud or other non-local storage, specify a local manifest path.

--file-manifest-inprogress-suffix=suffix

Apply the specified suffix to the file manifest's temporary file. For use with --file-
manifest=text. (Default suffix: .aspera-inprogress)

--file-pair-list=file

Transfer files and directories listed in file to their corresponding destinations. Each source is
specified on a separate line, with its destination on the line following it.

Specify destinations relative to the transfer user's docroot. Even if a destination is specified as an
absolute path, the path at the destination is still relative to the docroot. Destination paths specified in
the list are created automatically if they do not already exist.

For example, if the file pairlist.txt contains the following list of sources and destinations:

Dir1
Dir2
my_images/iris.png
project_images/iris.png
/tmp/code/compute.php

 | ascp: Transferring from the Command Line with Ascp | 96

/tmp/code/compute.php
/tmp/tests/testfile
testfile2

and the following command is run:

 ascp --file-pair-list=pairlist.txt --mode=send --user=username
 --host=ip_addr .

then the destination, in this case the transfer user's docroot, now contains the following:

Dir2 (and its contents)
project_images/iris.png
tmp/code/compute.php
testfile2

Restrictions:

• The command line cannot use the user@host:source syntax. Instead, specify this
information with the options --mode, --host, and --user.

• The user@host:source syntax cannot be used with paths specified in the file list.
• Because multiple sources are being transferred, the destination specified on the command line

must be a directory.
• Only one --file-pair-list or --file-list option is allowed per ascp session. If

multiple lists are specified, only the last one is used.
• Only files from the file pair list are transferred; any additional source files specified on the

command line are ignored.
• If the source paths are URIs, the file list cannot exceed 24 KB.

For additional examples, see Ascp General Examples on page 104.

-G write_size

If the transfer destination is a server, use the specified write-block size, which is the maximum
number of bytes that the receiver can write to disk at a time. Default: 256 KB, Range: up to
500 MB. This option accepts suffixes "M" or "m" for mega and "K" or "k" for kilo, such that a
write_size of 1M is one MB.

This is a performance-tuning option that overrides the write_block_size set in the client's
aspera.conf. However, the -G setting is overridden by the write_block_size set in the
server's aspera.conf. The receiving server never uses the write_block_size set in the
client's aspera.conf.

-g read_size

If the transfer source is a server, use the specified read-block size, which is the maximum number of
bytes that the sender reads from the source disk at a time. Default: 256 KB, Range: up to 500 MB.
This option accepts suffixes "M" or "m" for mega and "K" or "k" for kilo, such that a read_size of
1M is one MB.

This is a performance-tuning option that overrides the read_block_size set in the client's
aspera.conf. However, the -g setting is overridden by the read_block_size set in the
server's aspera.conf. When set to the default value, the read size is the default internal buffer
size of the server, which might vary by operating system. The sending server never uses the
read_block_size set in the client's aspera.conf.

-h, --help

Display the help text.

--host=hostname

Transfer to the specified host name or address. Requires --mode. This option can be used instead
of specifying the host with the hostname:file syntax.

 | ascp: Transferring from the Command Line with Ascp | 97

-i private_key_file

Authenticate the transfer using public key authentication with the specified SSH private key file.
The argument can be just the filename if the private key is located in user_home_dir/.ssh/,
because ascp automatically searches for key files there. Multiple private key files can be specified
by repeating the -i option. The keys are tried in order and the process ends when a key passes
authentication or when all keys have been tried without success, at which point authentication fails.

-K probe_rate

Measure bottleneck bandwidth at the specified probing rate (Kbps). (Default: 100Kbps)

-k {0|1|2|3}

Enable the resuming of partially transferred files at the specified resume level. (Default: 0)

Specify this option for the first transfer or it will not work for subsequent transfers. Resume levels:

-k 0 – Always re-transfer the entire file.
-k 1 – Compare file attributes and resume if they match, and re-transfer if they do not.
-k 2 – Compare file attributes and the sparse file checksums; resume if they match, and re-
transfer if they do not.
-k 3 – Compare file attributes and the full file checksums; resume if they match, and re-
transfer if they do not.

If a complete file exists at the destination (no .aspx), the source and destination file sizes are
compared. If a partial file and a valid .aspx file exist at the destination, the source file size and the
file size recorded in the .aspx file are compared.

Note: If the destination is a URI path, then the only valid options are -k 0 and -k 1 and no
.aspx file is created.

-L local_log_dir[:size]

Log to the specified directory on the client computer rather than the default directory. Optionally,
set the size of the log file (Default: 10 MB). See also -R for setting the log directory on the server.

-l max_rate

Transfer at rates up to the specified target rate. (Default: 10000 Kbps) This option accepts
suffixes "G" or "g" for giga, "M" or "m" for mega, "K" or "k" for kilo, and "P", "p", or "%" for
percentage. Decimals are allowed. If this option is not set by the client, the setting in the server's
aspera.conf is used. If a rate cap is set in the local or server aspera.conf, the rate does not
exceed the cap.

-m min_rate

Attempt to transfer no slower than the specified minimum transfer rate. (Default: 0) If this option is
not set by the client, then the server's aspera.conf setting is used. If a rate cap is set in the local
or server aspera.conf, then the rate does not exceed the cap.

--mode={send|recv}

Transfer in the specified direction: send or recv (receive). Requires --host.

--move-after-transfer=archivedir

Move source files and copy source directories to archivedir after they are successfully transferred.
Because directories are copied, the original source tree remains in place. The transfer user must
have write permissions to the archivedir. The archivedir is created if it does not already exist. If
the archive directory cannot be created, the transfer proceeds and the source files remain in their
original location.

To preserve portions of the file path above the transferred file or directory, use this option with --
src-base. For an example, see Ascp File Manipulation Examples on page 106.

To remove empty source directories (except those specified as the source to transfer), use this
option with --remove-empty-directories .

 | ascp: Transferring from the Command Line with Ascp | 98

Restrictions:

• archivedir must be on the same file system as the source. If the specified archive is on a separate
file system, it is created (if it does not exist), but an error is generated and files are not moved to
it.

• For cloud storage, archivedir must be in the same cloud storage account as the source and must
not already contain files with the same name (the existing files cannot be overwritten and the
archiving fails).

• If the source is on a remote system (ascp is run in receive mode), archivedir is subject to the
same docroot restrictions as the remote user.

• --remove-after-transfer and --move-after-transfer are mutually exclusive.
Using both in the same session generates an error.

• Empty directories are not saved to archivedir.
• When used with --remove-empty-directories and --src-base, scanning for empty

directories starts at the specified source base and proceeds down any subdirectories. If no source
base is specified and a file path (as opposed to a directory path) is specified, then only the
immediate parent directory is removed (if empty) after the source files have been moved.

--multi-session-threshold=threshold

Split files across multiple ascp sessions if their size is greater than or equal to threshold. Use with
-C, which enables multi-session transfers.

Files whose sizes are less than threshold are not split. If threshold is set to 0 (the default), no files
are split.

If --multi-session-threshold is not used, the threshold value is taken from the setting for
<multi_session_threshold_default> in the aspera.conf file on the client. If not
found in aspera.conf on the client, the setting is taken from aspera.conf on the server. The
command-line setting overrides any aspera.conf settings, including when the command-line
setting is 0 (zero).

Multi-session uploads to cloud storage are supported for S3 only and require additional
configuration. For more information, see Multi-Session Transfers on page 111.

-N 'pattern'

Include files or directories in the transfer based on matching the specified pattern to file names and
paths. Rules are applied in the order in which they are encountered, from left to right, such that -N
rules protect files from -E rules that follow them.

Note: An include rule must be followed by at least one exclude rule, otherwise all files are
transferred because none are excluded. To exclude all files that do not match the include rule, use -
N '/**/' -E '/**' at the end of your filter arguments.

The following symbols can be used in the pattern:

• * (asterisk) represents zero or more characters in a string, for example *.tmp matches .tmp
and abcde.tmp.

• ? (question mark) represents any single character, for example t?p matches tmp but not temp.

For details on specifying patterns and rules, including examples, see Using Filters to Include and
Exclude Files on page 116.

Note: Filtering rules can also be specified in aspera.conf. Rules found in aspera.conf are
applied before any -E and -N rules specified on the command line.

-O fasp_port

Use the specified UDP port for FASP transfers. (Default: 33001)

--overwrite={never|always|diff|diff+older|older}

Overwrite destination files with source files of the same name. Default: diff. This option takes the
following values:

 | ascp: Transferring from the Command Line with Ascp | 99

• never - Never overwrite the file. However, if the parent folder is not empty, its access, modify,
and change times may still be updated.

• always - Always overwrite the file.
• diff - Overwrite the file if different from the source. If a complete file at the destination is

the same as a file on the source, it is not overwritten. Partial files are overwritten or resumed
depending on the resume policy.

• diff+older - Overwrite the file if older and also different than the source. For example,
if the destination file is the same as the source, but with a different timestamp, it will not be
overwritten. Plus, if the destination file is different than the source, but newer, it will not be
overwritten.

• older - Overwrite the file if its timestamp is older than the source timestamp.

Interaction with resume policy (-k): If the overwrite method is diff or diff+older,
difference is determined by the resume policy (-k {0|1|2|3}). If -k 0 or no -k is specified,
the source and destination files are always considered different and the destination file is always
overwritten. If -k 1, the source and destination files are compared based on file attributes
(currently file size). If -k 2, the source and destination files are compared based on sparse
checksums. If -k 3, the source and destination files are compared based on full checksums.

-P ssh-port

Use the specified TCP port to initiate the FASP session. (Default: 22)

-p

Preserve file timestamps for access and modification time. Equivalent to setting --preserve-
modification-time and --preserve-access-time (and --preserve-creation-
time on Windows). Timestamp support in object storage varies by provider; consult your object
storage documentation to determine which settings are supported.

On Windows, modification time may be affected when the system automatically adjusts
for Daylight Savings Time (DST). For details, see the Microsoft KB article, http://
support.microsoft.com/kb/129574.

On Isilon IQ OneFS systems, access time (atime) is disabled by default. In this case, atime is the
same as mtime. To enable the preservation of atime, run the following command:

sysctl efs.bam.atime_enabled=1

--partial-file-suffix=suffix

Enable the use of partial files for files that are in transit, and set the suffix to add to names of partial
files. (The suffix does not include a " . ", as for a file extension, unless explicitly specified as part
of the suffix.) This option only takes effect when set on the receiver side. When the transfer is
complete, the suffix is removed. (Default: suffix is null; use of partial files is disabled.)

--policy={high|fair|low|fixed}

Set the FASP transfer policy.

• high - Adjust the transfer rate to fully utilize the available bandwidth up to the maximum rate.
When congestion occurs, the transfer rate is twice as fast as a fair-policy transfer. The high
policy requires maximum (target) and minimum transfer rates.

• fair - Adjust the transfer rate to fully utilize the available bandwidth up to the maximum rate.
When congestion occurs, bandwidth is shared fairly by transferring at an even rate. The fair
policy requires maximum (target) and minimum transfer rates.

• low - Adjust the transfer rate to use the available bandwidth up to the maximum rate. Similar
to fair mode, but less aggressive when sharing bandwidth with other network traffic. When
congestion occurs, the transfer rate is reduced to the minimum rate until other traffic decreases.

• fixed - Attempt to transfer at the specified target rate, regardless of network or storage
capacity. This can decrease transfer performance and cause problems on the target storage.

http://support.microsoft.com/kb/129574
http://support.microsoft.com/kb/129574

 | ascp: Transferring from the Command Line with Ascp | 100

Aspera discourages using the fixed policy except in specific contexts, such as bandwidth
testing. The fixed policy requires a maximum (target) rate.

If --policy is not set, ascp uses the server-side policy setting (fair by default). If the server
does not allow the selected policy, the transfer fails.

--precalculate-job-size

Calculate the total size before starting the transfer. The server-side pre_calculate_job_size
setting in aspera.conf overrides this option.

--preserve-access-time

Preserve the source-file access timestamps at the destination. Because source access times are
updated by the transfer operation, the timestamp preserved is the one just prior to the transfer.
(To prevent access times at the source from being updated by the transfer operation, use the --
preserve-source-access-time option.)

On Isilon IQ OneFS systems, access time (atime) is disabled by default. In this case, atime is the
same as mtime. To enable the preservation of atime, run the following command:

sysctl efs.bam.atime_enabled=1

--preserve-acls={native|metafile|none}

Preserve Access Control Lists (ACL) data for macOS, Windows, and AIX files. To preserve ACL
data for other operating systems, use --preserve-xattrs. See also --remote-preserve-
acls. Default: none.

• native - Preserve attributes using the native capabilities of the file system. This mode is only
supported for Windows, macOS, and AIX. If the destination and source do not support the same
native ACL format, async reports and error and exits.

• metafile- Preserve file attributes in a separate file, named filename.aspera-
meta. For example, attributes for readme.txt are preserved in a second file named
readme.txt.aspera-meta. These metafiles are platform independent and can be copied
between hosts without loss of information. This mode is supported on all file systems.

• none - Do not preserve attributes. This mode is supported on all file systems.

Important Usage Information:

• ACLs are not preserved for directories.
• Both --preserve-acls and --remote-preserve-acls must be specified in order for

the target side of a pull (Ascp with --mode=recv) to apply the ACLs.
• Very old versions of ascp do not support values other than none, and transfers using native

or metafile fail with an error that reports incompatible FASP protocol versions.

--preserve-creation-time

(Windows only) Preserve source-file creation timestamps at the destination. Only Windows systems
retain information about creation time. If the destination is not a Windows computer, this option is
ignored.

--preserve-file-owner-gid, --preserve-file-owner-uid

(Linux, UNIX, and macOS only) Preserve the group information (gid) or owner information (uid)
of the transferred files. These options require the transfer user to be authenticated as a superuser.

--preserve-modification-time

Set the modification time, the last time a file or directory was modified (written), of a transferred
file to the modification of the source file or directory. Preserve source-file modification timestamps
at the destination.

 | ascp: Transferring from the Command Line with Ascp | 101

On Windows, modification time may be affected when the system automatically adjusts
for Daylight Savings Time (DST). For details, see the Microsoft KB article, http://
support.microsoft.com/kb/129574.

--preserve-source-access-time

Preserve the access times of the original sources to the last access times prior to transfer. This
prevents access times at the source from being updated by the transfer operation. Typically used in
conjunction with the --preserve-access-time option.

--preserve-xattrs={native|metafile|none}

Preserve extended file attributes data (xattr). Default: none. See also --remote-preserve-
xattrs.

• native - Preserve attributes using the native capabilities of the file system. This mode is
supported only on macOS and Linux. If the destination and source do not support the same
native xattr format, async reports and error and exits. If the Linux user is not root, some
attributes such as system group might not be preserved.

• metafile- Preserve file attributes in a separate file, named filename.aspera-
meta. For example, attributes for readme.txt are preserved in a second file named
readme.txt.aspera-meta. These metafiles are platform independent and can be copied
between hosts without loss of information. This mode is supported on all file systems.

• none - Do not preserve attributes. This mode is supported on all file systems.

Important Usage Information:

• Extended attributes are not preserved for directories.
• If Ascp is run by a regular user, only user-level attributes are preserved. If run as superuser, all

attributes are preserved.
• The amount of attribute data per file that can be transferred successfully is subject to ascp's

internal PDPU size limitation.
• Very old versions of Ascp do not support values other than none, and transfers using native

or metafile fail with an error that reports incompatible FASP protocol versions.

--proxy=proxy_url

Use the proxy server at the specified address. proxy_url should be specified with the following
syntax:

dnat[s]://proxy_username:proxy_password@server_ip_address:port

The default ports for DNAT and DNATS protocols are 9091 and 9092. For a usage example, see
Ascp General Examples on page 104.

-q

Run ascp in quiet mode (disables the progress display).

-R remote_log_dir

Log to the specified directory on the server rather than the default directory. Note: Client users
restricted to aspshell are not allowed to use this option. To specify the location of the local log, use
-L.

--remote-preserve-acls={native|metafile|none}

Like --preserve-acls but used when ACLs are stored in a different format on the remote
computer. Defaults to the value of --preserve-acls.

Note: Both --preserve-acls and --remote-preserve-acls must be specified in order
for the target side of a pull (Ascp with --mode=recv) to apply the ACLs.

--remote-preserve-xattrs={native|metafile|none}

Like --preserve-xattrs but used when attributes are stored in a different format on the
remote computer. Defaults to the value of --preserve-xattrs.

http://support.microsoft.com/kb/129574
http://support.microsoft.com/kb/129574

 | ascp: Transferring from the Command Line with Ascp | 102

--remove-after-transfer

Remove all source files, but not the source directories, once the transfer has completed successfully.
Requires write permissions on the source.

--remove-empty-directories

Remove empty source directories once the transfer has completed successfully, but do not remove
a directory specified as the source argument. To also remove the specified source directory, use --
remove-empty-source-directory. Directories can be emptied using --move-after-
transfer or --remove-after-transfer. Scanning for empty directories starts at the
srcbase and proceeds down any subdirectories. If no source base is specified and a file path (as
opposed to a directory path) is specified, then only the immediate parent directory is scanned and
removed if it's empty following the move of the source file. Note: Do not use this option if multiple
processes (ascp or other) might access the source directory at the same time.

--remove-empty-source-directory

Remove directories specified as the source arguments. For use with --remove-empty-
directories.

-S remote_ascp

Use the specified remote ascp binary, if different than ascp.

--save-before-overwrite

Save a copy of a file before it is overwritten by the transfer. A copy of filename.ext is saved
as filename.yyyy.mm.dd.hh.mm.ss.index.ext in the same directory. index is set to 1
at the start of each second and incremented for each additional file saved during that second. The
saved copies retain the attributes of the original. Not supported for URI path destinations.

--skip-special-files

Skip special files, such as devices and pipes, without reporting errors for them.

--source-prefix=prefix

Prepend prefix to each source path. The prefix can be a conventional path or a URI; however, URI
paths can be used only if no docroot is defined.

--source-prefix64=prefix

Prepend the base64-encoded prefix to each source path. If --source-prefix=prefix is also
used, the last option takes precedence.

--src-base=prefix

Strip the specified path prefix from the source path of each transferred file or directory. The
remaining portion of the path remains intact at the destination.

Without --src-base, source files and directories are transferred without their source path.
(However, directories do include their contents.)

Note: Sources located outside the source base are not transferred. No errors or warnings are issued,
but the skipped files are logged.

Use with URIs: The --src-base option performs a character-to-character match with the source
path. For object storage source paths, the prefix must specify the URI in the same manner as the
source paths. For example, if a source path includes an embedded passphrase, the prefix must also
include the embedded passphrase otherwise it will not match.

For examples, see Ascp File Manipulation Examples on page 106.

--symbolic-links={follow|copy|copy+force|skip}

Handle symbolic links using the specified method, as allowed by the server. For more information
on symbolic link handling, see Symbolic Link Handling on page 122. On Windows, the only
method is skip. On other operating systems, any of the following methods can be used:

• follow - Follow symbolic links and transfer the linked files. (Default)

 | ascp: Transferring from the Command Line with Ascp | 103

• copy - Copy only the alias file. If a file with the same name is found at the destination, the
symbolic link is not copied.

• copy+force - Copy only the alias file. If a file (not a directory) with the same name is found
at the destination, the alias replaces the file. If the destination is a symbolic link to a directory,
it's not replaced.

• skip - Skip symbolic links. Do not copy the link or the file it points to.

-T

Disable in-transit encryption for maximum throughput.

--tags string

Metatags in JSON format. The value is limited to 4 Kb.

--tags64 string

Metatags in JSON format and base64 encoded. The value is limited to 4 Kb.

-u user_string

Define a user string, such as variables, for pre- and post-processing. This string is passed to the pre-
and -post-processing scripts as the environment variable $USERSTR.

--user=username

Authenticate the transfer using the specified username. Use this option instead of specifying the
username as part of the destination path (as user@host:file).

Note: If you are authenticating on a Windows computer as a domain user, the transfer server
strips the domain from the username. For example, Administrator is authenticated rather than
DOMAIN\Administrator. For this reason, you must specify the domain explicitly.

-v

Run ascp in verbose mode. This option prints connection and authentication debug messages in the
log file. For information on log files, see Log Files on page 330 .

-W {token_string|@token_file}

Authenticate using the authorization token string for the transfer, either as the string itself or when
preceded with an @, the full path to the token file. This option takes precedence over the setting for
the ASPERA_SCP_TOKEN environment variable.

-wr, -wf

Measure and report bandwidth from server to client (-wr) or client to server (-wf) before the
transfer.

-X rexmsg_size

Limit the size of retransmission requests to no larger than the specified size, in bytes. (Max: 1440)

-Z dgram_size

Use the specified datagram size (MTU) for FASP transfers. Range: 296-65535 bytes. (Default: the
detected path MTU)

As of version 3.3, datagram size can be specified on the server by setting <datagram_size> in
aspera.conf. The server setting overrides the client setting, unless the client is using a version
of ascp that is older than 3.3, in which case the client setting is used. If the pre-3.3 client does not
set -Z, the datagram size is the discovered MTU and the server logs the message "LOG Peer client
does not support alternative datagram size".

Ascp Options for HTTP Fallback

HTTP fallback serves as a secondary transfer method when the Internet connectivity required for Aspera FASP
transfers (UDP port 33001, by default) is unavailable. When HTTP fallback is enabled and UDP connectivity is lost
or cannot be established, the transfer will continue over the HTTP/S protocol.

Limitations:

 | ascp: Transferring from the Command Line with Ascp | 104

• HTTP fallback must be enabled on the server.
• Folders that are symbolic links cannot be downloaded directly by using HTTP fallback. Folders that are symbolic

links are processed correctly when their parent folder is the source.
• HTTP fallback can only follow symbolic links. Settings in aspera.conf or in the command line are ignored.
• HTTP fallback attempts to transfer at the target rate but is limited by TCP.
• HTTP fallback does not support pre-post processing or inline validation.

Options:

-I cert_file

Certify fallback transfers with the specified HTTPS certificate file.

-j {0|1}

Encode all HTTP transfers as JPEG files when set to 1. (Default: 0)

-t port

Transfer via the specified server port for HTTP fallback.

-x proxy_server

Transfer to the specified proxy server address for HTTP fallback.

-Y key_file

Certify HTTPS fallback transfers using the specified HTTPS transfer key.

-y {0|1}

If set to "1", use the HTTP fallback transfer server when a UDP connection fails. (Default: 0)

Ascp General Examples
Use the following Ascp examples to craft your own transfers.

To describe filepaths, use single-quote (' ') and forward-slashes (/) on all platforms. Avoid the following characters in
filenames: / \ " : ' ? > < & * |

• Fair-policy transfer

Fair-policy transfer with maximum rate 100 Mbps and minimum at 1 Mbps, without encryption, transfer all files
in \local-dir\files to 10.0.0.2:

 ascp --policy=fair -l 100m -m 1m /local-dir/files root@10.0.0.2:/remote-dir

• Fixed-policy transfer

Fixed-policy transfer with target rate 100 Mbps, without encryption, transfer all files in \local-dir\files to
10.0.0.2:

 ascp -l 100m /local-dir/files root@10.0.0.2:/remote-dir

• Specify UDP port for transfer

Transfer using UDP port 42000:

 ascp -l 100m -O 42000 /local-dir/files user@10.0.0.2:/remote-dir

• Public key authentication

Transfer with public key authentication using the key file <home dir>/.ssh/aspera_user_1-key
local-dir/files:

$ ascp -l 10m -i ~/.ssh/aspera_user_1-key local-dir/files root@10.0.0.2:/remote-dir

• Username or filepath contains a space

 | ascp: Transferring from the Command Line with Ascp | 105

Enclose the target in double-quotes when spaces are present in the username and remote path:

 ascp -l 100m local-dir/files "User Name@10.0.0.2:/remote directory"

• Content is specified in a file pair list

Specify source content to transfer to various destinations in a file pair list. Source content is specified using
the full file or directory path. Destination directories are specified relative to the transfer user's docroot, which
is specified as a "." at the end of the ascp command. For example, the following is a simple file pair list,
filepairlist.txt that lists two source folders, folder1 and folder2, with two destinations, tmp1 and
tmp2:

/tmp/folder1
tmp1
/tmp/folder2
tmp2

 ascp --user=user_1 --host=10.0.0.2 --mode=send --file-pair-list=/tmp/
filepairlist.txt .

This command and file pair list create the following directories within the transfer user's docroot on the
destination:

/tmp1/folder1
/tmp2/folder2

• Network shared location transfer

Send files to a network shares location \\1.2.3.4\nw-share-dir, through the computer 10.0.0.2:

 ascp local-dir/files root@10.0.0.2:"//1.2.3.4/nw-share-dir/"

• Parallel transfer on a multi-core system

Use parallel transfer on a dual-core system, together transferring at the rate 200Mbps, using UDP ports 33001 and
33002. Two commands are executed in different Terminal windows:

 ascp -C 1:2 -O 33001 -l 100m /file root@10.0.0.2:/remote-dir &
 ascp -C 2:2 -O 33002 -l 100m /file root@10.0.0.2:/remote-dir

• Upload with content protection

Upload the file local-dir/file to the server 10.0.0.2 with password protection (password: secRet):

 export ASPERA_SCP_FILEPASS=secRet ascp -l 10m --file-crypt=encrypt local-dir/file
 root@10.0.0.2:/remote-dir/

The file is saved on the server as file.aspera-env, with the extension indicating that the file is encrypted.
See the next example for how to download and decrypt an encrypted file from the server.

• Download with content protection and decryption

Download an encrypted file, file.aspera-env, from the server 10.0.0.2 and decrypt while transferring:

 export ASPERA_SCP_FILEPASS=secRet; ascp -l 10m --file-crypt=decrypt root@10.0.0.2:/remote-
dir/file.aspera-env /local-dir

• Decrypt a downloaded, encrypted file

If the password-protected file file1 is downloaded on the local computer without decrypting, decrypt
file1.aspera-env (the name of the downloaded/encrypted version of file1) to file1:

$ export ASPERA_SCP_FILEPASS=secRet; /opt/aspera/bin/asunprotect -o file1 file1.aspera-env

• Download through Aspera forward proxy with proxy authentication

 | ascp: Transferring from the Command Line with Ascp | 106

User Pat transfers the file /data/file1 to /Pat_data/ on 10.0.0.2, through the proxy server at 10.0.0.7
with the proxy username aspera_proxy and password pa33w0rd. After running the command, Pat is
prompted for the transfer user's (Pat's) password.

 ascp --proxy dnats://aspera_proxy:pa33w0rd@10.0.0.7 /data/file1 Pat@10.0.0.2:/Pat_data/

Test transfers using faux://

For information on the syntax, see Testing and Optimizing Transfer Performance on page 326.

• Transfer random data (no source storage required)

Transfer 20 GB of random data as user root to file newfile in the directory /remote-dir on 10.0.0.2:

ascp --mode=send --user=root --host=10.0.0.2 faux:///newfile?20g /remote-dir

• Transfer a file but do not save results to disk (no destination storage required)

Transfer the file /tmp/sample as user root to 10.0.0.2, but do not save results to disk:

ascp --mode=send --user=root --host=10.0.0.2 /temp/sample faux://

• Transfer random data and do not save result to disk (no source or destination storage required)

Transfer 10 MB of random data from 10.0.0.2 as user root and do not save result to disk:

ascp --mode=send --user=root --host=10.0.0.2 faux:///dummy?10m faux://

Ascp File Manipulation Examples
Ascp can manipulate files and directories as part of the transfer, such as upload only the files in the specified source
directory but not the directory itself, create a destination directory, and move or delete source files after they are
transferred.

• Upload a directory

Upload the directory /data/ to the server at 10.0.0.1, and place it in the /storage/ directory on the server:

 ascp /src/data/ root@10.0.0.1:/storage/

• Upload only the contents of a directory (not the directory itself) by using the --src-base option:

Upload only the contents of /data/ to the /storage/ directory at the destination. Strip the /src/data/
portion of the source path and preserve the remainder of the file structure at the destination:

 ascp --src-base=/src/data/ /src/data/ root@10.0.0.1:/storage/

• Upload a directory and its contents to a new directory by using the -d option.

Upload the /data/ directory to the server and if it doesn't already exist, create the new folder /storage2/ to
contain it, resulting in /storage2/data/ at the destination.

 ascp -d /src/data/ root@10.0.0.1:/storage2/

• Upload the contents of a directory, but not the directory itself, by using the --src-base option:

Upload all folders and files in the /clips/out/ folder, but not the out/ folder itself, to the /in/ folder at the
destination.

 ascp -d --src-base=/clips/out/ /clips/out/ root@10.0.0.1:/in/

Result: The source folders and their content appear in the in directory at the destination:

 | ascp: Transferring from the Command Line with Ascp | 107

Source
/clips/out/file1
/clips/out/folderA/file2
/clips/out/folderB/file3

Destination
/in/file1
/in/folderA/file2
/in/folderB/file3

Destination without --src-base
/in/out/file1
/in/out/folderA/file2
/in/out/folderB/file3

Without --src-base, the example command transfers not only the contents of the out/ folder, but the folder
itself.

Note: Sources located outside the source base are not transferred. No errors or warnings are issued, but the
skipped files are logged. For example, if /clips/file4 were included in the above example sources, it would
not be transferred because it is located outside the specified source base, /clips/out/.

• Upload only the contents of a file and a directory to a new directory by using --src-base

Upload a file, /monday/file1, and a directory, /tuesday/*, to the /storage/ directory on the server,
while stripping the srcbase path and preserving the rest of the file structure. The content is saved as /storage/
monday/file1and /storage/tuesday/* on the server.

 ascp --src-base=/data/content /data/content/monday/file1 /data/content/
tuesday/ root@10.0.0.1:/storage

• Download only the contents of a file and a directory to a new directory by using --src-base

Download a file, /monday/file1, and a directory, /tuesday/*, from the server, while stripping the srcbase
path and preserving the rest of the file structure. The content is saved as /data/monday/file1 and /data/
tuesday/* on the client.

 ascp --src-base=/storage/content root@10.0.0.1:/storage/content/monday/
file1 root@10.0.0.1:/storage/content/tuesday/ /data

• Move the source file on the client after it is uploaded to the server by using --move-after-transfer

Uploadfile0012 to Pat's docroot on the server at 10.0.0.1, and move (not copy) the file from C:/Users/
Pat/srcdir/ to C:/Users/Pat/Archive on the client.

 ascp --move-after-transfer=C:/Users/Pat/Archive C:/Users/Pat/srcdir/
file0012 Pat@10.0.0.1:/

• Move the source file on the server after it is downloaded to the client by using --move-after-transfer

Download srcdir from the server to C:/Users/Pat on the client, and move (not copy) srcdir to the
archive directory /Archive on the server.

 ascp --move-after-transfer=Archive Pat@10.0.0.1:/srcdir C:/Users/Pat

• Move the source file on the client after it is uploaded to the server and preserve the file structure one level
above it by using --src-base and --move-after-transfer

Upload file0012 to Pat's docroot on the server at 10.0.0.1, and save it as /srcdir/file0012 (stripped of
C:/Users/Pat). Also move file0012 from C:/Users/Pat/srcdir/ to C:/Users/Pat/Archive
on the client, where it is saved as C:/Users/Pat/Archive/srcdir/file0012.

 ascp --src-base=C:/Users/Pat --move-after-transfer=C:/Users/Pat/Archive
 C:/Users/Pat/srcdir/file0012 Pat@10.0.0.1:/

• Delete a local directory once it is uploaded to the remote server by using --remove-after-transfer
and --remove-empty-directories

 | ascp: Transferring from the Command Line with Ascp | 108

Upload /content/ to the server, then delete its contents (excluding partial files) and any empty directories on
the client.

 ascp -k2 -E "*.partial" --remove-after-transfer --remove-empty-
directories /data/content root@10.0.0.1:/storage

• Delete a local directory once its contents have been transferred to the remote server by using --src-base,
--remove-after-transfer, and --remove-empty-directories

Upload /content/ to the server, while stripping the srcbase path and preserving the rest of the file structure.
The content is saved as /storage/* on the server. On the client, the contents of /content/, including empty
directories but excluding partial files, are deleted.

 ascp -k2 -E "*.partial" --src-base=/data/content --remove-after-transfer
 --remove-empty-directories /data/content root@10.0.0.1:/storage

Ascp Transfers with Object Storage and HDFS
Ascp transfers to and from servers in the cloud are similar to other Ascp transfers, though they might require explicit
authorization to the storage as an authorization token or storage credentials.

Transfers with IBM Aspera On Demand and Cloud-Based HST Servers
Transfers to Aspera on Demand and cloud-based HST Servers require authorization credentials to the storage, but are
otherwise the same as transfers to on-premises HST Server.

Provide object storage credentials in one of the following ways:

• Specify the storage password or secret key in the transfer user's docroot. (Preferred method)
• Set the storage password or secret key as an environment variable.
• Specify the storage password or secret key in the command line.

With Docroot Configured: Authenticate in the Docroot

If your transfer user account has a docroot set that includes credentials or credentials are configured in the
.properties file, ascp transfers to and from Alibaba Cloud, Amazon S3, IBM COS - S3, Google Cloud Storage,
Akamai, SoftLayer, Azure, and are the same as regular ascp transfers.

For instructions on configuring a docroot for these types of storage, see IBM Aspera High-Speed Transfer Server
Admin Guide (Linux): Docroot Path Formatting for Cloud, Object, and HDFS Storage.

For command syntax examples, see Ascp General Examples on page 104. You are prompted for the transfer user's
password when you run an ascp command unless you set the ASPERA_SCP_PASS environment variable or use
SSH key authorization.

With No Docroot Configured: Authenticate with Environment Variables

Note: The ASPERA_DEST_PASS variable is not applicable to Google Cloud Storage or Amazon S3 using IAM
roles.

Set an environment variable (ASPERA_DEST_PASS) with the storage password or access key:

 export ASPERA_DEST_PASS = secret_key

With ASPERA_DEST_PASS and ASPERA_SCP_PASS set, run ascp with the syntax listed in the table for transfers
with no docroot configured, except that you do not need to include the storage password or access key, and are not
prompted for the Aspera password upon running ascp.

https://downloads.asperasoft.com/en/documentation/4
https://downloads.asperasoft.com/en/documentation/4

 | ascp: Transferring from the Command Line with Ascp | 109

With No Docroot Configured: Authenticate in the Command Line

If you do not have a docroot configured and do not set an environment variable (described previously), authenticate
in the command line. In the following examples, the storage password or secret key are included as part of
the destination path. You are prompted for the transfer user's password upon running ascp unless you set the
ASPERA_SCP_PASS environment variable or use SSH key authorization.

Storage Platform ascp Syntax and Examples

Alibaba Cloud Aspera recommends running ascp transfers with Alibaba Cloud with a docroot configured.

Amazon S3 • If you are using IAM roles, you do not need to specify the access ID or secret key for
your S3 storage.

Upload syntax:

 ascp options --mode=send --user=username --
host=s3_server_addr source_files s3://access_id:secret_key@s3.amazonaws.com/my_bucket

Upload example:

 ascp --mode=send --user=bear --
host=s3.asperasoft.com bigfile.txt
 s3://1K3C18FBWF9902:GEyU...AqXuxtTVHWtc@s3.amazonaws.com/
demos2014

Download syntax:

 ascp options --mode=recv --user=username --
host=s3_server_addr s3://access_id:secret_key@s3.amazonaws.com/my_bucket/
my_source_path destination_path

Download example:

 ascp --mode=recv --user=bear --host=s3.asperasoft.com
 s3://1K3C18FBWF9902:GEyU...AqXuxtTVHWtc@s3.amazonaws.com/
demos2014/bigfile.txt /tmp/

Azure These examples are for Azure blob storage. For Azure Files, use the syntax: azure-
files://storage_account:storage_access_key@file.core.windows.net/share.
Aspera recommends running ascp transfers with Azure Data Lake Storage with a docroot
configured.

Upload syntax:

 ascp options --mode=send --user=username --
host=server_address source_files azu://storage_account:storage_access_key@blob.core.windows.net/path_to_blob

Upload example:

 ascp --mode=send --user=AS037d8eda429737d6 --
host=dev920350144d2.azure.asperaondemand.com bigfile.txt
 azu://astransfer:zNfMtU...nBTkhB@blob.core.windows.net/abc

Download syntax:

 ascp options --mode=recv --user=username --
host=server azu://storage_account:storage_access_key@blob.core.windows.net/path_to_blob/source_file destination_path

 | ascp: Transferring from the Command Line with Ascp | 110

Storage Platform ascp Syntax and Examples

Download example:

 ascp --mode=recv --user=AS037d8eda429737d6 --
host=dev920350144d2.azure.asperaondemand.com azu://
astransfer:zNfMtU...nBTkhB@blob.core.windows.net/abc /
downloads

Google Cloud
Storage

Note: The examples below require that the VMI running the Aspera server is a Google
Compute instance.

 ascp options --mode=send --user=username --
host=server_address source_files gs:///my_bucket/my_path

Upload example:

 ascp --mode=send --user=bear --host=10.0.0.5 bigfile.txt
 gs:///2017_transfers/data

Download syntax:

 ascp options --mode=recv --user=username --
host=server gs:///my_bucket/my_path/source_file destination_path

Download example:

 ascp --mode=recv --user=bear --host=10.0.0.5
 gs:///2017_transfers/data/bigfile.txt /data

HDFS Aspera recommends running ascp transfers with HDFS with a docroot configured.

IBM COS - S3 Upload syntax:

 ascp options --mode=send --user=username --
host=server_address source_files s3://access_id:secret_key@accessor_endpoint/vault_name

Upload example:

 ascp --mode=send --user=bear --
host=s3.asperasoft.com bigfile.txt
 s3://3ITI3OIUFEH233:KrcEW...AIuwQ@38.123.76.24/demo2017

Download syntax:

 ascp options --mode=send --user=username --
host=server_address s3://access_id:secret_key@accessor_endpoint/vault_name/
source_files destination_path

Download example:

 ascp --mode=send --user=bear --host=s3.asperasoft.com
 s3://3ITI3OIUFEH233:KrcEW...AIuwQ@38.123.76.24/demo2017 /
tmp/

 | ascp: Transferring from the Command Line with Ascp | 111

Writing Custom Metadata for Objects in Object Storage
Files that are uploaded to metadata-compatible storage (S3, Google Cloud, and Azure) can have custom metadata
written with them by using the --tags or --tags64 option. The argument is a JSON payload that specifies the
metadata and that is base64 encoded if it is used as an argument for --tags64.

Metadata Behavior

• All objects that are uploaded in a session have the same metadata.
• If an upload resumes, the metadata of the original transfer is used.
• Multi-session transfers must specify the same metadata.
• Metadata are not retrieved when downloading objects; use the REST API associated with the storage.
• Transfers to object storages that do not support metadata (such as HDFS and Azure Files) fail if metadata is

specified.

Specifying Metadata in JSON

The JSON payload has the general syntax of key-value pairs in a "cloud-metadata" section:

{
 "aspera": {
 "cloud-metadata": [
 {"key1":"value1"},
 {"key2":"value2"},
 ...
] } }

Restrictions on key-value pairs:

• key cannot be ctime, mtime, or atime. These keys are reserved and the transfer fails if they are used.
• key might be case-sensitive, depending on the destination storage type.
• The key-value pair must be less than 1024 characters.

Sample Ascp Session with Metadata

 ascp --tags='{"aspera":{"cloud-metadata":[{"location":"skellig"}]}}'
 --mode=send --user=rey --host=s3.asperasoft.com sourcefile.mov s3://
s3.amazonaws.com/project

Multi-Session Transfers
Ascp can transfer content faster by using multi-session transfers (also known as parallel transfers and multi-part
transfers) to and from multi-node and multi-core servers and clusters, on premises or in the cloud. This article
describes the syntax of a multi-session transfer and provides an example.

Multi-session syntax

To run simultaneous ascp transfers, you can run each command from its own terminal window, run a script in a
single terminal, or background processes with the shell.

For a typical push (--mode=send) transfer:

 ascp -C nid_1:ncount -l max_rate [-O port_1][--multi-session-
threashold=threshold] [--tags={\"aspera\":{\"xfer_id\":
\"transfer_id\"}}] source_path hostname:destination_path
 ascp -C nid_2:ncount -l max_rate [-O port_2] [--multi-
session-threashold=threshold] [--tags={\"aspera\":{\"xfer_id\":
\"transfer_id\"}}] source_path hostname:destination_path
...

 | ascp: Transferring from the Command Line with Ascp | 112

 ascp -C nid_n:ncount -l max_rate [-O port_n] [--multi-
session-threashold=threshold] [--tags={\"aspera\":{\"xfer_id\":
\"transfer_id\"}}] source_path hostname:destination_path

Where:

• -C nid:ncount tells Ascp that the same source and destination are being used by multiple, concurrent
sessions. nid is the node ID and ncount is the number of nodes or cores. The valid range of values for nid and
ncount is 1 through 128, and nid must be less than or equal to ncount.

• -O port is used to assign each session to a different UDP port. This is required when the server's operating
system does not support concurrent sessions using the same UDP port. This applies to Windows, macOS, Isilon
OneFS, and Solaris operating systems.

Note: Make sure that the server's firewall is configured to accept transfers on the range of UDP ports.
• --multi-session-threshold is an optional argument that enables files to be split between sessions.

The threshold value specifies, in bytes, the smallest-size file that can be split. Files greater than or equal to the
threshold are split, while those smaller than the threshold are not. If the multi-session threshold is set to 0 (zero),
files are not split.

• --tags={\"aspera\":{\"xfer_id\":\"transfer_id\"}} is required for multi-session transfers
to cloud in order to provide a transfer ID. The transfer ID is the same for all the sessions in the multi-session
transfer. If an upload is restarted with the same xfer_id then the transfer is resumed, but if a different xfer_id is
used then the upload is completely restarted.

• If you are uploading to a cloud-based AWS S3 cluster, you must authenticate with an access key or Assumed role
rather than an IAM role.

• If you are self-managing an Aspera server or cluster of Aspera servers in the cloud (you installed IBM Aspera
High-Speed Transfer Server on a VM), you must configure the server for multi-session transfers.

File-spliting with multi-session threshold

The value of the multi-session threshold depends on the target rates that a single ascp transfer can achieve on your
system for files of a given size, as well as the typical distribution of file sizes in the transfer list.

Note: A default value for the threshold can be specified in the server and client aspera.conf by setting
<multi-session_threshold_default> in the <default> section. The command-line setting overrides
the aspera.conf setting. If the client's aspera.conf does not specify a default value for the threshold, then the
server's setting is used (if specified). If neither the client nor the server set a multi-session threshold, then no files are
split.

To set a value (in bytes) from the command line, run the following:

 asconfigurator -x
 "set_node_data;transfer_multi_session_threshold_default,threshold"

Multi-Session Transfer Example

The following example shows a multi-session transfer on a dual-core system. Together, the two sessions can transfer
at up to 2 Gbps and each session uses a different UDP port. No multi-session threshold is specified on the command
line or in aspera.conf, so no file splitting occurs.

 ascp -C 1:2 -O 33001 -l 1000m /dir01 10.0.0.2:/remote_dir
 ascp -C 2:2 -O 33002 -l 1000m /dir01 10.0.0.2:/remote_dir

If dir01 contains multiple files, ascp distributes the files between each command to get the most efficient
throughput. If dir01 contains only one file, only one of the commands transfers the file.

In the following example, the multi-session threshold is used to enable file splitting:

 ascp -C 1:2 -O 33001 -l 100m --multi-session-threshold=5242880 /dir01
 10.0.0.2:/remote_dir

 | ascp: Transferring from the Command Line with Ascp | 113

 ascp -C 2:2 -O 33002 -l 100m --multi-session-threshold=5242880 /dir01
 10.0.0.2:/remote_dir

In this case, if dir01 contains multiple files, all files less than 5 MB are distributed between sessions, while all files
5 MB or larger are split and then distributed between sessions. If dir01 contains only one file and that file is 5 MB
or larger, then the file is split, otherwise the file is transferred by one session.

Using Standard I/O as the Source or Destination
Ascp can use standard input (stdin) as the source or standard output (stdout) as the destination for a transfer, usually
managed by using the Aspera FASP Manager SDK. The syntax depends on the number of files in your transfer; for
single files use stdio:// and for multiple files use stdio-tar://. The transfer is authenticated using SSH or a
transfer token.

Named Pipes

A named pipe can be specified as a stdio destination, with the syntax stdio:///path for single files, or stdio-
tar:///path for multiple files, where path is the path of the named pipe. If a docroot is configured on the
destination, then the transfer goes to the named pipe docroot/path.

Note: Do not use stdio:///path to transfer multiple files. The file data is asynchronously concatenated in the
output stream and might be unusable. Use stdio-tar:///path instead, which demarcates multiple files with
headers.

Note: Do not use zero-byte files with standard I/O transfers.

Single File Transfers

To upload data that is piped into stdin, set the source as stdio:///?fsize, wherefsize is the number of bytes (as
a decimal) that are received from stdin. The destination is set as the path and filename. The file modification time is
set to the time at which the upload starts. Standard input must transfer the exact amount of data that is set by fsize. If
more or less data is received by the server, an error is generated.

To download data and pipe it into stdout, set the destination as stdio://.

Restrictions:

• stdio:// cannot be used for persistent sessions. Use stdio-tar:// instead.
• Only --overwrite=always or --overwrite=never are supported with stdio://. The behavior of --

overwrite=diff and --overwrite=diff+older is undefined.

Single-file Transfer Examples:

• Upload 1025 bytes of data from the client stdin to /remote-dir on the server at 10.0.0.2. Save the data as the
file newfile. Transfer at 100 Mbps.

file_source | ascp -l 100m --mode=send --user=username --host=10.0.0.2
 stdio:///?1025 /remote-dir/newfile

• Download the file remote_file from the server at 10.0.0.2 to stdout on the client. Transfer at 100 Mbps.

ascp -l 100m --mode=recv --user=username --host=10.0.0.2 remote_file
 stdio://

• Upload the file local_file to the server at 10.0.0.2 to the named pipe /tmp/outpipe. Transfer at 100
Mbps.

ascp -l 100m --mode=send --user=username --host=10.0.0.2 local_file
 stdio:////tmp/outpipe

 | ascp: Transferring from the Command Line with Ascp | 114

Multi-File Transfers

Ascp can transfer one or more files in an encoded, streamed interface, similar to single file transfers. The primary
difference is that the stream includes headers that demarcate data from individual files.

To upload files that are piped into stdin, set the source as stdio-tar://. The file modification time is set to the
time at which the upload starts.

The file(s) in the input stream must be encoded in the following format. File can be the file name or file path, Size
is the size of the file in bytes, and Offset is an optional parameter that sets where in the destination file to begin
overwriting with the raw inline data:

[0 - n blank lines]
File: /path/to/file_1
Size: file_size
Offset: bytes

file_1 data
[0 - n blank lines]
File: /path/to/file_2
Size: file_size

file 2 data
...

To download one or more files to stdout, set the destination as stdio-tar://. Normal status output to stdout is
suppressed during downloads because the transfer output is streamed to stdout. The data sent to stdout has the same
encoding as described for uploads.

To download to a named pipe, set the destination to stdio-tar:////path, where path is the path of the named
pipe.

When an offset is specified, the bytes that are sent replace the existing bytes in the destination file (if it exists). The
bytes added to the destination file can extend beyond the current file size. If no offset is set, the bytes overwrite the
file if overwrite conditions are met.

Restrictions:

• When downloading to stdio-tar://, the source list must consist of individual files only. Directories are not
allowed.

• Only --overwrite=always or --overwrite=never are supported with stdio-tar://. The behavior
of --overwrite=diff and --overwrite=diff+older is undefined.

• Offsets are only supported if the destination files are located in the native file system. Offsets are not supported for
cloud destinations.

Multi-file Transfer Examples:

• Upload two files, myfile1 (1025 bytes) and myfile2 (20 bytes), to /remote-dir on the server at 10.0.0.2.
Transfer at 100 Mbps.

cat sourcefile | ascp -l 100m --mode=send --user=username --host=10.0.0.2
 stdio-tar:// /remote-dir

Where sourcefile contains the following:

File: myfile1
Size: 1025

<< 1025 bytes of data>>
File: myfile2
Size: 20

 | ascp: Transferring from the Command Line with Ascp | 115

<<20 bytes of data>>

• Uploading multiple files from stdin by using a persistent session is the same as a non-persistent session.
• Update bytes 10-19 in file /remote-dir/myfile1 on the server at 10.0.0.2 at 100 Mbps.

cat sourcefile | ascp -l 100m --mode=send --user=username --host=10.0.0.2
 stdio-tar:// /remote-dir

Where sourcefile contains the following:

File: myfile1
Size: 10
Offset: 10

<< 10 bytes of data>>

• Upload two files, myfile1 and myfile2, to the named pipe /tmp/mypipe (streaming output) on the server
at 10.0.0.2. Transfer at 100 Mbps.

ascp -l 100m --mode=send --user=username --host=10.0.0.2 myfile1 myfile2
 stdio-tar:////tmp/mypipe

This sends an encoded stream of myfile1 and myfile2 (with the format of sourcefile in the upload
example) to the pipe /tmp/mypipe. If /tmp/mypipe does not exist, it is created.

• Download the files from the previous example from 10.0.0.2 to stdout. Transfer at 100 Mbps.

ascp -l 100m --mode=recv --user=username --host=10.0.0.2 myfile1 myfile2
 stdio-tar://

Standard output receives data identical to sourcefile in the upload example.
• Download /tmp/myfile1 and /tmp/myfile2 to stdout by using a persistent session. Start the persistent

session, which listens on management port 12345:

ascp -l 100m --mode=recv --keepalive -M 12345 --user=username --
host=10.0.0.2 stdio-tar://

Send the following in through management port 12345:

 FASPMGR 2
 Type: START
 Source: /tmp/myfile1
 Destination: mynewfile1

 FASPMGR 2
 Type: START
 Source: /tmp/myfile2
 Destination: mynewfile2

 FASPMGR 2
 Type: DONE

The destination must be a filename; file paths are not supported.

Standard out receives the transferred data with the following syntax:

File: mynewfile1
Size: file_size

mynewfile1_data
File: mynewfile2
Size: file_size

 | ascp: Transferring from the Command Line with Ascp | 116

mynewfile2_data

• Upload two files, myfile1 and myfile2, to named pipe /tmp/mypipe on the server at 10.0.0.2. Transfer at
100 Mbps.

ascp -l 100m --mode=send --user=username --host=10.0.0.2 myfile1 myfile2
 stdio-tar:////tmp/mypipe

If file/tmp/mypipe does not exist, it is created.
• Upload two files, myfile1 (1025 bytes) and myfile2 (20 bytes) from stdio and regenerate the stream on the

destination to send out through the named pipe /tmp/mypipe on the server at 10.0.0.2. Transfer at 100 Mbps.

cat sourcefile | ascp -l 100m --mode=send --user=username --host=10.0.0.2
 stdio-tar:// stdio-tar:////tmp/pipe

Where sourcefile contains the following:

File: myfile1
Size: 1025

<< 1025 bytes of data>>
File: myfile2
Size: 20

<<20 bytes of data>>

Using Filters to Include and Exclude Files
Filters refine the list of source files (or directories) to transfer by indicating which to skip or include based on name
matching. When no filtering rules are specified by the client, Ascp transfers all source files in the transfer list; servers
cannot filter client uploads or downloads.

Command Line Syntax

-E 'pattern' Exclude files or directories with names or paths that match pattern.
-N 'pattern' Include files or directories with names or paths that match pattern.

Where:

• pattern is a file or directory name, or a set of names expressed with UNIX glob patterns.
• Surround patterns that contain wildcards with single quotes to prevent filter patterns from being interpreted by the

command shell. Patterns that do not contain wildcards can also be in single quotes.

Basic usage

• Filtering rules are applied to the transfer list in the order they appear on the command line. If filtering rules are
configured in aspera.conf, they are applied before the rules on the command line.

• Filtering is a process of exclusion, and -N rules override -E rules that follow them. -N cannot add back files that
are excluded by a preceding exclude rule.

• An include rule must be followed by at least one exclude rule, otherwise all files are transferred because none are
excluded. To exclude all files that do not match the include rule, use -N '/**/' -E '/**' at the end of your
filter arguments.

• Filtering operates only on the set of files and directories in the transfer list. An include rule (-N) cannot add files
or directories that are not already part of the transfer list.

 | ascp: Transferring from the Command Line with Ascp | 117

Example Transfer Result

-E 'rule' Transfer all files and directories except those with names that match rule.

-N 'rule' Transfer all files and directories because none are excluded.

To transfer only the files and directories with names that match rule use:

ascp -N 'rule' -N '/**/' -E '/**'

-N 'rule1' -E 'rule2' Transfer all files and directories with names that match rule1, as well as all other files
and directories except those with names that match rule2.

-E 'rule1' -N 'rule2' Transfer all files and directories except those with names that match rule1. All files
and directories not already excluded by rule1 are included because no additional
exclude rule follows -N 'rule2'.

To transfer only the files and directories with names that do not match rule1 but do
match rule2 use:

ascp -E 'rule1' -N 'rule2' -N '/**/' -E '/**'

Filtering Rule Application

Filters can be specified on the ascp command line and in aspera.conf. Ascp applies filtering rules that are set in
aspera.conf before it applies rules on the command line.

Filtering order

Filtering rules are applied to the transfer list in the order they appear on the command line.

1. Ascp compares the first file (or directory) in the transfer list to the pattern of the first rule.
2. If the file matches the pattern, Ascp includes it (-N) or excludes it (-E) and the file is immune to any following

rules.

Note: When a directory is excluded, directories and files in it are also excluded and are not compared to any
following rules. For example, with the command-line options -E '/images/' -N '/images/icons/',
the directory /images/icons/ is not included or considered because /images/ was already excluded.

3. If the file does not match, Ascp compares it with the next rule and repeats the process for each rule until a match is
found or until all rules have been tried.

4. If the file never matches any exclude rules, it is included in the transfer.
5. The next file or directory in the transfer list is then compared to the filtering rules until all eligible files are

evaluated.

Example

Consider the following command:

 ascp -N 'file2' -E 'file[0-9]' imagesicons user1@examplehost:/tmp

Where imagesicons is the source.

If imagesicons contains file1, file2, and fileA, the filtering rules are applied as follows:

1. file1 is compared with the first rule (-N 'file2') and does not match so filtering continues.
2. file1 is compared with the second rule (-E 'file[0-9]) and matches, so it is excluded from the transfer.
3. file2 is compared with the first rule and matches, so it is included in the transfer and filtering stops for file2.
4. fileA is compared with the first rule and does not match so filtering continues.
5. fileA is compared with the second rule and does not match. Because no rules exclude it, fileA is included in

the transfer.

 | ascp: Transferring from the Command Line with Ascp | 118

Note: If the filtering rules ended with -N '/**/' -E '/**', then fileA would be excluded because it was
not "protected" by an include rule.

Rule Patterns

Rule patterns (globs) use standard globbing syntax that includes wildcards and special characters, as well as several
Aspera extensions to the standard.

• Character case: Case always matters, even if the file system does not enforce such a distinction. For example, on
Windows FAT or NTFS file systems and macOS HPFS+, a file system search for "DEBUG" returns files "Debug"
and "debug". In contrast, Ascp filter rules use exact comparison, such that "debug" does not match "Debug". To
match both, use "[Dd]ebug".

• Partial matches: With globs, unlike standard regular expressions, the entire filename or directory name must
match the pattern. For example, the pattern abc*f matches abcdef but not abcdefg.

Standard Globbing: Wildcards and Special Characters

/ The only recognized path separator.

\ Quotes any character literally, including itself. \ is exclusively a quoting operator, not
a path separator.

* Matches zero or more characters, except "/" or the . in "/.".

? Matches any single character, except "/" or the . in "/.".

[…] Matches exactly one of a set of characters, except "/" or the . in "/.".

[^…] When ^ is the first character, matches exactly one character not in the set.

[!…] When ! is the first character, matches exactly one character not in the set.

[x-x] Matches exactly one of a range of characters.

[:xxxxx:] For details about this type of wildcard, see any POSIX-standard guide to globbing.

Globbing Extensions: Wildcards and Special Characters

no / or * at end of pattern Matches files only.

/ at end of pattern Matches directories only. With -N, no files under matched directories or their
subdirectories are included in the transfer. All subdirectories are still included,
although their files will not be included. However, with -E, excluding a directory also
excludes all files and subdirectories under it.

* or /** at end of pattern Matches both directories and files.

/** Like * but also matches "/" and the . in "/.".

/ at start of pattern Must match the entire string from the root of the transfer set. (Note: The leading /
does not refer to the system root or the docroot.)

Standard Globbing Examples

Wildcard Example Matches Does Not Match

/ abc/def/xyz abc/def/xyz abc/def

\ abc\? abc? abc\? abc/D abcD

* abc*f abcdef abc.f abc/f abcefg

? abc?? abcde abc.z abcdef abc/d abc/.

 | ascp: Transferring from the Command Line with Ascp | 119

Wildcard Example Matches Does Not Match

[…] [abc]def adef cdef abcdef ade

[^…] [^abc]def zdef .def 2def bdef /def /.def

[!…] [!abc]def zdef .def 2def cdef /def /.def

[:xxxxx:] [[:lower:]]def cdef ydef Adef 2def .def

Globbing Extension Examples

Wildcard Example Matches Does Not Match

/** a/**/f a/f a/.z/f a/d/e/f a/d/f/ za/d/f

* at end of rule abc* abc/ abcfile

/** at end of rule abc/** abc/.file abc/d/e/ abc/

/ at end of rule abc/*/ abc/dir abc/file

no / at end of rule abc abc (file) abc/

/ at start of rule /abc/def /abc/def xyz/abc/def

Testing Your Filter Rules

If you plan to use filtering rules, it's best to test them first. An easy way to test filtering rules, or to learn how they
work, is to set up source and destination directories and use demo.asperasoft.com as the Aspera server:

1. On your computer, create a set of directories and files (size can be small) that approximate a typical transfer file
set. In the following example, the file set is in tmpsrc.

2. Upload the file set to the Aspera demo server (demo.asperasoft.com) with the following command:

 ascp tmpsrc aspera@demo.asperasoft.com:Upload/

Where the user is "aspera" and the target is the Upload directory. At the prompt, enter the password
"demoaspera".

3. Create a destination directory on your computer, for example tmpdest.
4. Download your files from the demo server to tmpdest to test your filtering rules. For example:

 ascp -N 'wxy/**' -E 'def' aspera@demo.asperasoft.com:Upload/src/ tmpdest

5. Compare the destination directory with the source to determine if the filter behaved as expected.

$ diff -r dest/ src/

The diff output shows the missing files and directories (those that were not transferred).

Example Filter Rules

The example rules below are based on running a command such as the following to download a directory AAA from
demo.asperasoft.com to tmpdest:

 ascp rules aspera@demo.asperasoft.com:Upload/AAA tmpdest

The examples below use the following file set:

AAA/abc/def
AAA/abc/.def
AAA/abc/.wxy/def

 | ascp: Transferring from the Command Line with Ascp | 120

AAA/abc/wxy/def
AAA/abc/wxy/.def
AAA/abc/wxy/tuv/def
AAA/abc/xyz/def/wxy
AAA/wxyfile
AAA/wxy/xyx/
AAA/wxy/xyxfile

Key for interpreting example results below:

< xxx/yyy = Excluded
xxx/yyy = Included
zzz/ = directory name
zzz = filename

1. Transfer everything except files and directories starting with ".":

-N '*' -E 'AAA/**'

Results:

AAA/abc/def
AAA/abc/wxy/def
AAA/abc/wxy/tuv/def
AAA/abc/xyz/def/wxy
AAA/wxyfile
AAA/wxy/xyx/
AAA/wxy/xyxfile
< AAA/abc/.def
< AAA/abc/.wxy/def
< AAA/abc/wxy/.def

2. Exclude directories and files whose names start with wxy:

-E 'wxy*'

Results:

AAA/abc/def
AAA/abc/.def
AAA/abc/.wxy/def
AAA/abc/xyz/def/
< AAA/abc/wxy/def
< AAA/abc/wxy/.def
< AAA/abc/wxy/tuv/def
< AAA/abc/xyz/def/wxy
< AAA/wxyfile
< AAA/wxy/xyx/
< AAA/wxy/xyxfile

3. Include directories and files that start with "wxy" if they fall directly under AAA:

-N 'wxy*' -E 'AAA/**'

Results:

AAA/wxy/
AAA/wxyfile
< AAA/abc/def
< AAA/abc/.def
< AAA/abc/.wxy/def

 | ascp: Transferring from the Command Line with Ascp | 121

< AAA/abc/wxy/def
< AAA/abc/wxy/.def
< AAA/abc/wxy/tuv/def
< AAA/abc/xyz/def/wxy
< AAA/wxy/xyx/
< AAA/wxy/xyxfile

4. Include directories and files at any level that start with wxy, but do not include dot-files, dot-directories, or any
files under the wxy directories (unless they start with wxy). However, subdirectories under wxy will be included:

-N '*/wxy*' -E 'AAA/**'

Results:

AAA/abc/wxy/tuv/
AAA/abc/xyz/def/wxy
AAA/wxyfile
AAA/wxy/xyx/
< AAA/abc/def
< AAA/abc/.def
< AAA/abc/.wxy/def
< AAA/abc/wxy/def *
< AAA/abc/wxy/.def
< AAA/abc/wxy/tuv/def
< AAA/wxy/xyxfile

* Even though wxy is included, def is excluded because it's a file.
5. Include wxy directories and files at any level, even those starting with ".":

-N '*/wxy*' -N '*/wxy/**' -E 'AAA/**'

Results:

AAA/abc/wxy/def
AAA/abc/wxy/.def
AAA/abc/wxy/tuv/def
AAA/abc/xyz/def/wxy
AAA/wxyfile
AAA/wxy/xyx/
AAA/wxy/xyxfile
< AAA/abc/def
< AAA/abc/.def
< AAA/abc/.wxy/def

6. Exclude directories and files starting with wxy, but only those found at a specific location in the tree:

-E '/AAA/abc/wxy*'

Results:

AAA/abc/def
AAA/abc/.def
AAA/abc/.wxy/def
AAA/abc/xyz/def/wxy
AAA/wxyfile
AAA/wxy/xyx/
AAA/wxy/xyxfile
< AAA/abc/wxy/def
< AAA/abc/wxy/.def
< AAA/abc/wxy/tuv/def

 | ascp: Transferring from the Command Line with Ascp | 122

7. Include the wxy directory at a specific location, and include all its subdirectories and files, including those starting
with ".":

-N 'AAA/abc/wxy/**' -E 'AAA/**'

Results:

AAA/abc/wxy/def
AAA/abc/wxy/.def
AAA/abc/wxy/tuv/def
< AAA/abc/def
< AAA/abc/.def
< AAA/abc/.wxy/def
< AAA/abc/xyz/def/wxy
< AAA/wxyfile
< AAA/wxy/xyx/
< AAA/wxy/xyxfile

Symbolic Link Handling
When transferring files using FASP (ascp, ascp4, or async), you can configure how the server and client handle
symbolic links.

Note: Symbolic links are not supported on Windows. Server settings are ignored on Windows servers. If the transfer
destination is a Windows computer, the only supported option that the client can use is skip.

Symbolic Link Handling Options and their Behavior

• Follow: Follow a symbolic link and transfer the contents of the linked file or directory as long as the link target is
in the user's docroot.

• Follow_wide (Server only): For downloads, follow a symbolic link and transfer the contents of the linked file or
directory even if the link target is outside of the user's docroot. Use caution with this setting because it might
allow transfer users to access sensitive files on the server.

• Create (Server only): If the client requests to copy symbolic links in an upload, create the symbolic links on the
server.

• None (Server only): Prohibit clients from creating symbolic links on the server; with this setting clients can only
request to follow or skip symbolic links.

• Copy (Client only): Copy only the symbolic link. If a file with the same name exists at the destination, the
symbolic link does not replace the file.

• Copy+force (Client only): Copy only the symbolic link. If a file with the same name exists at the destination, the
symbolic link replaces the file. If the file of the same name at the destination is a symbolic link to a directory, it
is not replaced.

Note: A4 and Sync do not support the copy+force option.
• Skip (Client only): Skip symbolic links. Neither the link nor the file to which it points are transferred.

Symbolic link handling depends on the server configuration, the client handling request, and the direction of transfer,
as described in the following tables. Multiple values can be set on the server as a comma-delimited list, such as the
default "follow,create". In this case, the options are logically ORed based on the client's handling request.

Send from Client to Server (Upload)

Server setting
= create, follow
(default)

Server setting =
create

Server setting =
follow

Server setting =
follow_wide

Server setting =
none

Client setting =
follow

Follow Follow Follow Follow Follow

 | ascp: Transferring from the Command Line with Ascp | 123

Server setting
= create, follow
(default)

Server setting =
create

Server setting =
follow

Server setting =
follow_wide

Server setting =
none

(default for ascp
and ascp4)

Client setting =
copy

(default for
async)

Copy Copy Skip Skip Skip

Client setting =
copy+force

Copy and replace
any existing files.

Copy and replace
any existing files.

Skip Skip Skip

Client setting =
skip

Skip Skip Skip Skip Skip

Receive to Client from Server (Download)

Server setting
= create, follow
(default)

Server setting =
create

Server setting =
follow

Server setting =
follow_wide

Server setting =
none

Client setting =
follow

(default for ascp
and ascp4)

Follow Skip Follow Follow even
if the target is
outside the user's
docroot.

Skip

Client setting =
copy

(default for
async)

Copy Copy Copy Copy Copy

Client setting =
copy+force

Copy and replace
any existing files.

Copy and replace
any existing files.

Copy and replace
any existing files.

Copy and replace
any existing files.

Copy and replace
any existing files.

Client setting =
skip

Skip Skip Skip Skip Skip

Server and Client Configuration

Server Configuration

To set symbolic link handling globally or per user, run the appropriate command:

 asconfigurator -x "set_node_data;symbolic_links,value"
 asconfigurator -x "set_user_data;user_name,username;symbolic_links,value"

For more information, see aspera.conf - File System Configuration on page 54.

Client Configuration

To specify symbolic link handling on the command line (with ascp, ascp4, or async), use --symbolic-
links=option.

 | ascp: Transferring from the Command Line with Ascp | 124

Creating SSH Keys
Public key authentication (SSH Key) is a more secure alternative to password authentication that allows users
to avoid entering or storing a password, or sending it over the network. Public key authentication uses the client
computer to generate the key-pair (a public key and a private key). The public key is then provided to the remote
computer's administrator to be installed on that machine.

If you are using this machine as a client to connect to other Aspera servers with public key authentication, you need to
generate a key-pair for the selected user account, as follows:

1. Create a .ssh directory in your home directory if it does not already exist:

$ mkdir /home/username/.ssh

Go to the .ssh folder:

$ cd /home/username/.ssh

2. Run ssh-keygen to generate an SSH key-pair.

Run the following command in the .ssh folder to create a key pair. For key_type, specify either RSA (rsa)
or ECDSA (ecdsa). At the prompt for the key-pair's filename, press ENTER to use the default name id_rsa or
id_ecdsa, or enter a different name, such as your username. For a passphrase, either enter a password, or press
return twice to leave it blank:

 ssh-keygen -t key_type

Note: When you run ascp in FIPS mode (<fips_enabled> is set to true in aspera.conf), and you
use passphrase-protected SSH keys, you must either (1) use keys generated by running ssh-keygen in a FIPS-
enabled system, or (2) convert existing keys to a FIPS-compatible format using a command such as the following:

 openssl pkcs8 -topk8 -v2 aes128 -in id_rsa -out new-id_rsa

3. Retrieve the public key file.

The key-pair is generated to your home directory's .ssh folder. For example, assuming you generated the key
with the default name id_rsa:

/home/username/.ssh/id_rsa.pub

Provide the public key file (for example, id_rsa.pub) to your server administrator so that it can be set up for
your server connection. The instructions for installing the public key on the server can be found in the Setting Up
a User's Public Key on the Server on page 29; however, the server may be installed on an operating system
that is different from the one where your client has been installed.

4. Start a transfer using public key authentication with the ascp command.

To transfer files using public key authentication on the command line, use the option -i private_key_file. For
example:

$ ascp -T -l 10M -m 1M -i ~/.ssh/id_rsa myfile.txt jane@10.0.0.2:/space

In this example, you are connecting to the server (10.0.0.2, directory /space) with the user account jane
and the private key ~/.ssh/id_rsa.

 | ascp: Transferring from the Command Line with Ascp | 125

Reporting Checksums
File checksums are useful for trouble-shooting file corruption, allowing you to determine at what point in the transfer
file corruption occurred. Aspera servers can report source file checksums that are calculated on-the-fly during transfer
and then sent from the source to the destination.

To support checksum reporting, the transfer must meet both of the following requirements:

• Both the server and client computers must be running HST Server (formerly Enterprise Server and Connect
Server) or HST Endpoint (formerly Point-to-Point Client) version 3.4.2 or higher.

• The transfer must be encrypted. Encryption is enabled by default.

The user on the destination can calculate a checksum for the received file and compare it (manually or
programmatically) to the checksum reported by the sender. The checksum reported by the source can be retrieved
in the destination logs, a manifest file, in IBM Aspera Console, or as an environment variable. Instructions for
comparing checksums follow the instructions for enabling checksum reporting.

Checksum reporting is disabled by default. Enable and configure checksum reporting on the server by using the
following methods:

• Edit aspera.conf with asconfigurator.
• Set ascp command-line options (per-transfer configuration).

Command-line options override the settings in aspera.conf.

Important: When checksum reporting is enabled, transfers of very large files (>TB) take a long time to resume
because the entire file must be reread.

Overview of Checksum Configuration Options

asconfigurator Option

ascp Option

Description

file_checksum

--file-checksum=type

Enable checksum reporting and specify the type of checksum to
calculate for transferred files.

any - Allow the checksum format to be whichever format the client
requests. (Default in aspera.conf)
md5 - Calculate and report an MD5 checksum.
sha1 - Calculate and report a SHA-1 checksum.
sha256 - Calculate and report a SHA-256 checksum.
sha384 - Calculate and report a SHA-384 checksum.
sha512 - Calculate and report a SHA-512 checksum.

Note: The default value for the ascp option is none, in which case the
reported checksum is the one configured on the server, if any.

file_manifest

--file_manifest=output

The file manifest is a file that contains a list of content that was
transferred in a transfer session. The file name of the file manifest is
automatically generated from the transfer session ID.

When set to none, no file manifest is created. (Default)

When set to text, a text file is generated that lists all files in each
transfer session.

file_manifest_path The location where manifest files are written. The location can be an
absolute path or a path relative to the transfer user's home directory. If

 | ascp: Transferring from the Command Line with Ascp | 126

asconfigurator Option

ascp Option

Description

--file_manifest_path=path no path is specified (default), the file is generated under the destination
path at the receiver, and under the first source path at the sender.

Note: File manifests can be stored only locally. Thus, if you are using
S3 or other non-local storage, you must specify a local manifest path.

Enabling checksum reporting by editing aspera.conf

To enable checksum reporting, run the following command:

 asconfigurator -x "set_node_data;file_checksum,checksum"

To enable and configure the file manifest where checksum report data is stored, run the following commands:

 asconfigurator -x "set_node_data;file_manifest,text"
 asconfigurator -x "set_node_data;file_manifest_path,filepath"

These commands create lines in aspera.conf as shown in the following example, where checksum type is md5,
file manifest is enabled, and the path is /tmp.

<file_system>
 ...
 <file_checksum>md5</file_checksum>
 <file_manifest>text</file_manifest>
 <file_manifest_path>/tmp</file_manifest_path>
 ...
</file_system>

Enabling checksum reporting in an ascp session

To enable checksum reporting on a per-transfer-session basis, run ascp with the --file-checksum=hash
option, where hash is sha1, md5, sha-512, sha-384, sha-256, or none (the default).

Enable the manifest with --file-manifest=output where output is either text or none. Set the path to the
manifest file with --file-manifest-path=path.

For example:

 ascp --file-checksum=md5 --file-manifest=text --file-manifest-path=/
tmp file aspera_user_1@189.0.202.39:/destination_path

Setting up a Pre/Post-processing Script

An alternative to enabling and configuring the file manifest to collect checksum reporting is to set up a pre/post-
processing script to report the values.

The checksum of a transferred file is stored in the pre/post environment variable FILE_CSUM, which can be used in
pre/post scripts to output file checksums. For example, the following script outputs the checksum to the file /tmp/
cksum.log:

#!/bin/bash
if [$TYPE == File]; then
 if [$STARTSTOP == Stop]; then
 echo "The file is: $FILE" >> /tmp/cksum.log
 echo "The file checksum is: $FILE_CSUM" >> /tmp/cksum.log

 | ascp: Transferring from the Command Line with Ascp | 127

 chmod 777 $FILE
 fi
fi

For information on pre- and post-processing scripts and environment variables, see File Pre- and Post-Processing
(Prepost) on page 81.

Comparing Checksums

If you open a file that you downloaded with Aspera and find that it is corrupted, you can determine when the
corruption occurred by comparing the checksum that is reported by Aspera to the checksums of the files on the
destination and on the source.

1. Retrieve the checksum that was calculated by Aspera as the file was transferred.

• If you specified a file manifest and file manifest path as part of an ascp transfer or pre/post processing script,
the checksums are in that file in the specified location.

• If you specified a file manifest and file manifest path in the GUI or aspera.conf, the checksums are in a
file that is named aspera-transfer-transfer_id-manifest.txt in the specified location.

2. Calculate the checksum of the corrupted file. This example uses the MD5 checksum method; replace MD5 with
the appropriate checksum method if you use a different one.

csum -h MD5 filepath

3. Compare the checksum reported by Aspera with the checksum that you calculated for the corrupted file.

• If they do not match, then corruption occurred as the file was written to the destination. Download the file
again and confirm that it is not corrupted. If it is corrupted, compare the checksums again. If they do not
match, investigate the write process or attempt another download. If they match, continue to the next step.

• If they match, then corruption might have occurred as the file was read from the source. Continue to the next
step.

4. Calculate the checksums for the file on the source. These examples use the MD5 checksum method; replace MD5
with the appropriate checksum method if you use a different one.

Windows:

> CertUtil -hashfile filepath MD5

Mac OS X:

$ md5 filepath

Linux and Linux on z Systems:

md5sum filepath

AIX:

csum -h MD5 filepath

Solaris:

digest -a md5 -v filepath

5. Compare the checksum of the file on the source with the one reported by Aspera.

• If they do not match, then corruption occurred when the file was read from the source. Download the file again
and confirm that it is not corrupted on the destination. If it is corrupted, continue to the next step.

• If they match, confirm that the source file is not corrupted. If the source file is corrupted, replace it with an
uncorrupted one, if possible, and then download the file again.

 | ascp: Transferring from the Command Line with Ascp | 128

Client-Side Encryption-at-Rest (EAR)
Aspera clients can set their transfers to encrypt content that they upload to a server while it is in transit and stored on
the server, a process known as client-side encryption-at-rest (EAR). The client specifies an encryption password and
the files are uploaded to the server with a .aspera-env extension. Anyone downloading these .aspera-env
files must have the password to decrypt them, and decryption can occur as the files are downloaded or later once they
are physically moved to a computer with no network connection.

Implementation Notes:

• Client-side and server-side EAR can be used simultaneously, in which case files are doubly encrypted on the
server.

• Servers can require client-side encryption. In this case, transfers that do not use client-side EAR fail with the error
message, "Error: Server aborted session: Server requires content protection."

• Client-side encryption-at-rest is supported only for ascp transfers, and is not supported for ascp4 or async
transfers.

Using Client-Side EAR

Client-side EAR can be set in the ascp command line.

First, set the encryption and decryption password as the environment variable ASPERA_SCP_FILEPASS:

 export ASPERA_SCP_FILEPASS=password

For uploads (--mode=send), use --file-crypt=encrypt. For downloads (--mode=recv), use --file-
crypt=decrypt.

 ascp --mode=send --file-
crypt=encrypt source_file user@host:/remote_destination
 ascp --mode=recv --file-crypt=decrypt user@host:/source_path/file.aspera-
env local_destination

For more command line examples, see Ascp General Examples on page 104.

Note: When a transfer to HST Server falls back to HTTP or HTTPS, client-side EAR is no longer supported.
If HTTP fallback occurs while uploading, then the files are NOT encrypted. If HTTP fallback occurs while
downloading, then the files remain encrypted.

Encrypting and Decrypting Files Outside of a Transfer

For particularly sensitive content, do not store unecrypted content on any computer with network access. Use an
external drive to physically move encrypted files between computers. HST Server include the asprotect and
asunprotect command-line tools that can be used to encrypt and decrypt files.

• To encrypt a file before moving it to a computer with network access, run the following command:

 export ASPERA_SCP_FILEPASS=password;asprotect -o file1.aspera-env file1

• To download client-side-encrypted files without decrypting them immediately, run the transfer without decryption
enabled (do not specify --file-crypt=decrypt on the ascp command line).

• To decrypt encrypted files once they are on a computer with no network access, run the following command:

 export ASPERA_SCP_FILEPASS=password;asunprotect -o file1 file1.aspera-env

 | ascp: Transferring from the Command Line with Ascp | 129

Comparison of Ascp and Ascp 4 Options
Many command-line options are the same for Ascp and Ascp 4; however, some options are available for only one or
the behavior of an option is different. The following table lists the options that are available only for Ascp or Ascp 4,
and the options that are available with both. If the option behavior is different, the Ascp option has ** added to the
end and the difference is described following the table.

Ascp Ascp 4

-6

-@[range_low:range_high]

-A, --version -A, --version

--apply-local-docroot

-C nodeid:nodecount

-c cipher -c cipher

--check-sshfp=fingerprint

--chunk-size=bytes

--compare=method

--compression=method

--compression-hint=num

-D | -DD | -DDD

-d

--delete-before

--delete-before-transfer** --delete-before-transfer**

--dest64

-E pattern -E pattern

-e prepost_filepath

--exclude-newer-than=mtime

--exclude-older-than=mtime

-f config_file

--faspmgr-io

--file-checksum=hash

--file-crypt={encrypt|decrypt}

--file-list=filepath** --file-list=filepath**

--file-manifest={none|text}

--file-manifest-path=directory

--file-manifest-inprogress-suffix=suffix

--file-pair-list=filepath

 | ascp: Transferring from the Command Line with Ascp | 130

Ascp Ascp 4

-G write_size

-g read_size

-h, --help -h, --help

-i private_key_file_path** -i private_key_file_path

-K probe_rate

-k {0|1|2|3} -k {0|1|2|3}

--keepalive --keepalive

-l max_rate -l max_rate

-L local_log_dir[:size] -L local_log_dir[:size]

-m min_rate -m min_rate

--memory=bytes

--meta-threads=num

--mode={send|recv} --mode={send|recv}

--move-after-transfer=archivedir

--multi-session-threshold=threshold

-N pattern -N pattern

--no-open

--no-read

--no-write

-O fasp_port -O fasp_port

--overwrite=method** --overwrite=method**

-P ssh-port -P ssh-port

-p -p

--partial-file-suffix=suffix

--policy={fixed|high|fair|low} --policy={fixed|high|fair|low}

--precalculate-job-size

--preserve-access-time

--preserve-acls=mode

--preserve-creation-time

--preserve-file-owner-gid --preserve-file-owner-gid

--preserve-file-owner-uid --preserve-file-owner-uid

--preserve-modification-time

--preserve-source-access-time

--preserve-xattrs=mode

 | ascp: Transferring from the Command Line with Ascp | 131

Ascp Ascp 4

--proxy=proxy_url

-q -q

-R remote_log_dir -R remote_log_dir

--read-threads=num

--remote-memory=bytes

--remote-preserve-acls=mode

--remote-preserve-xattrs=mode

--remove-after-transfer

--remove-empty-directories

--remove-empty-source-directory

--resume (similar to -k)

--retry-timeout=secs

-S remote_ascp

--save-before-overwrite

--scan-threads=num

--source-prefix=prefix

--source-prefix64=prefix

--sparse-file

--src-base=prefix --src-base=prefix

--symbolic-links=method** --symbolic-links=method**

-T -T

-u user_string -u user_string

--user=username --user=username

-v

-W token_string | @token_filepath

-w{r|f}

-X rexmsg_size -X rexmsg_size

-Z dgram_size -Z dgram_size

Differences in Option Behavior
--delete-before-transfer

With ascp4, --delete-before-transfer can be used with URI storage. URI storage is not
supported for this option in ascp.

--file-list

ascp automatically applies -d if the destination folder does not exist. With ascp4, you must
specify -d, otherwise all the files in the file list are written to a single file.

 | ascp: Transferring from the Command Line with Ascp | 132

-i (SSH key authentication)

With ascp, the argument for -i can be just the file name of the private key file and ascp
automatically looks in the .ssh directory of the user's home directory. With ascp4, the full or
relative path to the private key file must be specified.

--overwrite=method

The default overwrite method is "diff" for ascp and "always" for ascp4.

--symbolic-links

Both ascp and ascp4 support follow, copy, and skip, but only ascp supports copy+force.

Ascp FAQs
Answers to some common questions about controlling transfer behavior, such as bandwidth usage, resuming files,
and overwriting files.

1. How do I control the transfer speed?

You can specify a transfer policy that determines how a FASP transfer utilizes the network resource, and you can
specify target and minimum transfer rates where applicable. In an ascp command, use the following flags to
specify transfer policies that are fixed, fair, high, or low:

Policy Command template

Fixed
--policy=fixed -l target_rate

Fair
--policy=fair -l target_rate -m min_rate

High
--policy=high -l target_rate -m min_rate

Low
--policy=low -l target_rate -m min_rate

The policies have the following characteristics:

• high - Adjust the transfer rate to fully utilize the available bandwidth up to the maximum rate. When
congestion occurs, the transfer rate is twice as fast as a fair-policy transfer. The high policy requires
maximum (target) and minimum transfer rates.

• fair - Adjust the transfer rate to fully utilize the available bandwidth up to the maximum rate. When
congestion occurs, bandwidth is shared fairly by transferring at an even rate. The fair policy requires
maximum (target) and minimum transfer rates.

• low - Adjust the transfer rate to use the available bandwidth up to the maximum rate. Similar to fair mode, but
less aggressive when sharing bandwidth with other network traffic. When congestion occurs, the transfer rate
is reduced to the minimum rate until other traffic decreases.

• fixed - Attempt to transfer at the specified target rate, regardless of network or storage capacity. This can
decrease transfer performance and cause problems on the target storage. Aspera discourages using the fixed
policy except in specific contexts, such as bandwidth testing. The fixed policy requires a maximum (target)
rate.

2. What transfer speed should I expect? How do I know if something is "wrong" with the speed?

Aspera's FASP transport has no theoretical throughput limit. Other than the network capacity, the transfer speed
may be limited by rate settings and resources of the computers. To verify that your system's FASP transfer can
fulfill the maximum bandwidth capacity, prepare a client computer to connect to a server, and test the maximum
bandwidth.

 | ascp: Transferring from the Command Line with Ascp | 133

Note: This test typically occupies most of a network's bandwidth. Aspera recommends this test be performed on a
dedicated file transfer line or during a time of low network activity.

On the client computer, start a transfer with fixed bandwidth policy. Start with a lower transfer rate and gradually
increase the transfer rate toward the network bandwidth (for example, 1 MB, 5 MB, 10 MB, and so on). Monitor
the transfer rate; at its maximum, it should be slightly below your available bandwidth:

$ ascp -l 1m source-file destination

To improve the transfer speed, also consider upgrading the following hardware components:

Component Description

Hard disk The I/O throughput, the disk bus architecture (such as RAID, IDE, SCSI, ATA, and Fiber
Channel).

Network I/O The interface card, the internal bus of the computer.

CPU Overall CPU performance affects the transfer, especially when encryption is enabled.

3. How do I ensure that if the transfer is interrupted or fails to finish, it will resume without re-transferring
the files?

Use the -k flag to enable resume, and specify a resume rule:

-k 0 – Always re-transfer the entire file.
-k 1 – Compare file attributes and resume if they match, and re-transfer if they do not.
-k 2 – Compare file attributes and the sparse file checksums; resume if they match, and re-transfer if they do
not.
-k 3 – Compare file attributes and the full file checksums; resume if they match, and re-transfer if they do
not.

Corruption or deletion of the .asp-meta file associated with an incomplete transfer will often result in a
permanently unusable destination file even if the file transfer resumed and successfully transferred.

4. How does Aspera handle symbolic links?

The ascp command follows symbolic links by default. This can be changed using --symbolic-
links=method with the following options:

• follow - Follow symbolic links and transfer the linked files. (Default)
• copy - Copy only the alias file. If a file with the same name is found at the destination, the symbolic link is

not copied.
• copy+force - Copy only the alias file. If a file (not a directory) with the same name is found at the

destination, the alias replaces the file. If the destination is a symbolic link to a directory, it's not replaced.
• skip - Skip symbolic links. Do not copy the link or the file it points to.

Important: On Windows, the only option is skip.

Symbolic link handling also depends on the server configuration and the transfer direction. For more information,
see Symbolic Link Handling on page 122.

5. What are my choices for overwriting files on the destination computer?

In ascp, you can specify the --overwrite=method rule with the following method options:

• never - Never overwrite the file. However, if the parent folder is not empty, its access, modify, and change
times may still be updated.

• always - Always overwrite the file.
• diff - Overwrite the file if different from the source. If a complete file at the destination is the same as a file

on the source, it is not overwritten. Partial files are overwritten or resumed depending on the resume policy.
• diff+older - Overwrite the file if older and also different than the source. For example, if the destination

file is the same as the source, but with a different timestamp, it will not be overwritten. Plus, if the destination
file is different than the source, but newer, it will not be overwritten.

 | ascp4: Transferring from the Command Line with Ascp 4 | 134

• older - Overwrite the file if its timestamp is older than the source timestamp.

Interaction with resume policy (-k): If the overwrite method is diff or diff+older, difference is
determined by the resume policy (-k {0|1|2|3}). If -k 0 or no -k is specified, the source and destination
files are always considered different and the destination file is always overwritten. If -k 1, the source and
destination files are compared based on file attributes (currently file size). If -k 2, the source and destination
files are compared based on sparse checksums. If -k 3, the source and destination files are compared based on
full checksums.

ascp4: Transferring from the Command Line with Ascp 4

Ascp 4 is a command-line FASP file transfer program that is similar to Ascp, but has different strengths and
capabilities.

Introduction to Ascp 4
Ascp 4 is optimized for sending extremely large sets of files (thousands and more small files in a single session).

Note: Ascp 4 also supports data and video streaming, but this capability is only provided with the IBM Aspera
Streaming product. For information about Ascp 4 streaming, see the IBM Aspera Streaming for Video User Guide.

Required Configuration for Multicast-to-Multicast Streaming

The transfer user who authenticates the data multicast transfer must have no docroot configured in aspera.conf.
A file restriction can be set instead to restrict access.

Run the following command to unset a docroot and set a file restriction:

 asconfigurator -x
 "set_user_data;user_name,username;absolute,AS_NULL;file_restriction,|restriction"

The restriction can be set to allow all access (*) or limited by protocol, hostname or path:

Restriction Format Example

By protocol udp://*

tcp://*

By protocol and hostname udp://hostname*

By protocol, hostname, and port tcp://hostname:5000*

Ascp 4 Command Reference
Supported environment variables, the general syntax, and command options for ascp4 are described in the following
sections. ascp4 exits with a 0 on success or a 1 on error. The error code is logged in the ascp4 log file.

Note: Not all ascp options are available with ascp4. For more information, see Comparison of Ascp and Ascp 4
Options on page 129. Additionally, ascp4 transfers fail if the user's docroot is a symbolic link, whereas ascp
supports symbolic link docroots.

https://downloads.asperasoft.com/en/downloads/60

 | ascp4: Transferring from the Command Line with Ascp 4 | 135

ascp4 Syntax

ascp4 options [[user@]srcHost:]source_file1[,source_file2,...]
 [[user@]destHost:]dest_path

User

The username of the Aspera transfer user can be specified as part of the as part of the source or destination, whichever
is the remote server or with the --user option. If you do not specify a username for the transfer, the local username
is authenticated by default.

Note: If you are authenticating on a Windows machine as a domain user, the transfer server strips the domain from
the username. For example, Administrator is authenticated rather than DOMAIN\Administrator. Thus, you
must specify the domain explicitly.

Source and destination paths

• If there are multiple source arguments, then the target path must be a directory.
• To describe filepaths, use single quotes (' ') and forward slashes (/) on all platforms.
• To transfer to the transfer user's docroot, specify "." as the destination.
• Avoid the following characters in filenames: / \ " : ' ? > < & * |.
• If the destination is a symbolic link, then the file is written to the target of the symbolic link. However, if the

symbolic link path is a relative path to a file (not a directory) and a partial file name suffix is configured on the
receiver, then the destination path is relative to the user's home directory. Files within directories that are sent to
symbolic links that use relative paths are not affected.

URI paths: URI paths are supported, but only with the following restrictions:

• If the source paths are URIs, they must all be in the same cloud storage account. No docroot (download), local
docroot (upload), or source prefix can be specified.

• If a destination path is a URI, no docroot (upload) or local docroot (download) can be specified.
• The special schemes stdio:// and stdio-tar:// are supported only on the client side. They cannot be used

as an upload destination or download source.
• If required, specify the URI passphrase as part of the URI or set it as an environment variable

(ASPERA_SRC_PASS or ASPERA_DST_PASS, depending on the direction of transfer).

UNC paths: If the server is Windows and the path on the server is a UNC path (a path that points to a shared
directory or file on Windows operating systems) then it can be specified in an ascp4 command using one of the
following conventions:

1. UNC path that uses backslashes (\)

If the client side is a Windows machine, the UNC path can be used with no alteration. For example, \
\192.168.0.10\temp. If the client is not a Windows machine, every backslash in the UNC path must be
replaced with two backslashes. For example, \\\\192.168.0.10\\temp.

2. UNC path that uses forward slashes (/)

Replace each backslash in the UNC path with a forward slash. For example, if the UNC path is \
\192.168.0.10\temp, change it to //192.168.0.10/temp. This format can be used with any client-side
operating system.

Required File Access and Permissions

• Sources (for downloads) or destinations (for uploads) on the server must be in the transfer user's docroot or match
one of the transfer user's file restrictions, otherwise the transfer stops and returns an error.

• The transfer user must have sufficient permissions to the sources or destinations, for example write access for the
destination directory, otherwise the transfer stops and returns a permissions error.

• The transfer user must have authorization to do the transfer (upload or download), otherwise the transfer stops and
returns a "management authorization refused" error.

 | ascp4: Transferring from the Command Line with Ascp 4 | 136

• Files that are open for write by another process on a Windows source or destination cannot be transferred and
return a "sharing violation" error. On Unix-like operating systems, files that are open for write by another process
are transferred without reporting an error, but may produce unexpected results depending on what data in the file
is changed and when relative to the transfer.

Environment Variables

If needed, you can set the following environment variables for use with an ascp4 session. The total size for
environment variables depends on your operating system and transfer session. Aspera recommends that each
environment variable value should not exceed 4096 characters.

ASPERA_SCP_PASS=password

The password that is used for SSH authentication of the transfer user.

ASPERA_SCP_TOKEN=token

Set the transfer user authorization token. Ascp 4 currently supports transfer tokens, which must be
created by using astokengen with the --full-paths option.

ASPERA_SCP_COOKIE=cookie

A cookie string that is passed to monitoring services.

ASPERA_SRC_PASS=password

The password that is used to authenticate to a URI source.

ASPERA_DST_PASS=password

Set the password that is used to authenticate to a URI destination.

Ascp 4 Options
-A, --version

Display version and license information.

-c {aes128|aes192|aes256|none}

Encrypt in-transit file data using the specified cipher. This option overrides the
<encryption_cipher> setting in aspera.conf.

--check-sshfp=fingerprint

Compare fingerprint to the server SSH host key fingerprint that is set with
<ssh_host_key_fingerprint> in aspera.conf. Aspera fingerprint convention is to use
a hex string without the colons; for example, f74e5de9ed0d62feaf0616ed1e851133c42a0082. For
more information on SSH host key fingerprints, see Securing Your SSH Server on page 14.

--chunk-size=bytes

Perform storage read/write operations with the specified buffer size. Also use the buffer size as an
internal transmission and compression block. Valid range: 4 KB - 128 MB. For transfers with object
storage, use --chunk-size=1048576 if chunk size is not configured on the server to ensure
that the chunk size of ascp4 and Trapd match.

--compare={size|size+mtime|md5|md5-sparse|sha1|sha1-sparse}method

When using --overwrite and --resume, compare files with the specified method. If the --
overwrite method is diff or diff+older, the default --compare method is size.

--compression={none|zlib|lz4}

Compress file data inline. Default: lz4. If set to zlib, --compression-hint can be used to
set the compression level.

--compression-hint=num

Compress file data to the specified level when --compression is set to an option that accepts
compression level settings (currently only zlib). A lower value results in less, but faster, data

 | ascp4: Transferring from the Command Line with Ascp 4 | 137

compression (0 = no compression). A higher value results in greater, slower compression. Valid
values are -1 to 9, where -1 is "balanced". Default: -1.

-D | -DD | -DDD

Log at the specified debug level. With each D, an additional level of debugging information is
written to the log. This option is not supported if the transfer user is restricted to aspshell.

--delete-before, --delete-before-transfer

Before transfer, delete files that exist at the destination but not at the source. The source and
destination arguments must be directories that have matching names. Objects on the destination that
have the same name but different type or size as objects on the source are not deleted. Do not use
with multiple sources or --keepalive.

-E pattern

Exclude files or directories from the transfer based on the specified pattern. Use the -N option
(include) to specify exceptions to -E rules. Rules are applied in the order in which they are
encountered, from left to right. The following symbols can be used in the pattern:

• * (asterisk) represents zero or more characters in a string, for example *.tmp matches .tmp
and abcde.tmp.

• ? (question mark) represents a single character, for example t?p matches tmp but not temp.

For details and examples, see Using Filters to Include and Exclude Files on page 116.

Note: When filtering rules are found in aspera.conf, they are applied before rules given on the
command line (-E and -N).

--exclude-newer-than=mtime

--exclude-older-than=mtime

Exclude files (but not directories) from the transfer based on when the file was last changed.
Positive mtime values are used to express time, in seconds, since the original system time (usually
1970-01-01 00:00:00). Negative mtime values (prefixed with "-") are used to express the number of
seconds prior to the current time.

--faspmgr-io

Run ascp4 in API mode using FASP manager I/O. ascp4 reads FASPMGR4 commands from
management and executes them. The FASPMGR4 commands are PUT/WRITE/STOP to open/
write/close on a file on the server.

--file-list=filepath

Transfer the files and directories that are listed in filepath. Only the files and directories are
transferred; path information is not preserved at the destination. Each source must be specified on a
separate line, for example:

src
src2
...
srcN

To read a file list from standard input, use "-" in place of filepath (as ascp4 --file-list=-
…). UTF-8 file format is supported. Use with -d if the destination folder does not exist.

Restrictions:

• Paths in file lists cannot use user@host:filepath syntax. You must use --user with --
file-list.

• Only one --file-list option is allowed per ascp4 session. If multiple file lists are
specified, all but the last are ignored.

• Only files and directories from the file list are transferred, and any additional source files or
directories specified on the command line are ignored.

 | ascp4: Transferring from the Command Line with Ascp 4 | 138

• If more than one read thread is specified (default is 2) for a transfer that uses --file-list,
the files in the file list must be unique. Duplicates can produce unexpected results on the
destination.

• Because multiple sources are being transferred, the destination must be a directory.
• If the source paths are URIs, the size of the file list cannot exceed 24 KB.

For very large file lists (~100 MB+), use with --memory to increase available buffer space.

-h, --help

Display the usage summary.

--host=host

Transfer to the specified host name or address. Requires --mode. This option can be used instead
of specifying the host as part of the filename (as hostname:filepath).

-i private_key_file

Authenticate the transfer using public key authentication with the specified SSH private key
file (specified with a full or relative path). The private key file is typically in the directory
$HOME/.ssh/. If multiple -i options are specified, only the last one is used.

-k {0|1|2|3}

Enable the resumption of partially transferred files at the specified resume level. Default: 0. This
option must be specified for your first transfer or it does not work for subsequent transfers. Resume
levels:

• -k 0: Always re-transfer the entire file (same as --overwrite=always).
• -k 1: Compare file modification time and size and resume if they match (same as --

overwrite=diff --compare=size --resume).
• -k 2: Compare sparse checksum and resume if they match (same as --overwrite=diff

--compare=md5-sparse --resume).
• -k 3: Compare full checksum and resume if they match (same as --overwrite=diff --

compare=md5 --resume).

--keepalive

Enable ascp4 to run in persistent mode. This option enables a persistent session that does not
require that source content and its destination are specified at execution. Instead, the persistent
session reads source and destination paths through mgmt commands. Requires --mode and --
host.

-L local_log_dir[:size]

Log to the specified directory on the client machine rather than the default directory. Optionally, set
the size of the log file (default 10 MB).

-l max_rate

Transfer at rates up to the specified target rate. Default: 10 Mbps. This option accepts suffixes "G/
g" for Giga, "M/m" for Mega, "K/k" for Kilo, and "P/p/%" for percentage. Decimals are allowed.
If this option is not set by the client, the server target rate is used. If a rate cap is set in the local or
server aspera.conf, then the rate does not exceed the cap.

-m min_rate

Attempt to transfer no slower than the specified minimum transfer rate. Default: 0. If this option is
not set by the client, then the server's aspera.conf setting is used. If a rate cap is set in the local
or server aspera.conf, then the rate does not exceed the cap.

--memory=bytes

Allow the local ascp4 process to use no more than the specified memory. Default: 256 MB. See
also --remote-memory.

--meta-threads=num

 | ascp4: Transferring from the Command Line with Ascp 4 | 139

Use the specified number of directory "creation" threads (receiver only). Default: 2.

--mode={send|recv}

Transfer in the specified direction: send or recv (receive). Requires --host.

-N pattern

Protect ("include") files or directories from exclusion by any -E (exclude) options that follow
it. Files and directories are specified using pattern. Each option-plus-pattern is a rule. Rules are
applied in the order (left to right) in which they're encountered. Thus, -N rules protect files only
from -E rules that follow them. Create patterns using standard globbing wildcards and special
characters such as the following:

• * (asterisk) represents zero or more characters in a string, for example *.tmp matches .tmp
and abcde.tmp.

• ? (question mark) represents any single character, for example t?p matches tmp but not temp.

For details on specifying patterns and rules, including examples, see Using Filters to Include and
Exclude Files on page 116.

Note: Filtering rules can also be specified in aspera.conf. Rules found in aspera.conf are
applied before any -E and -N rules specified on the command line.

--no-open

In test mode, do not actually open or write the contents of destination files.

--no-read

In test mode, do not read the contents of source files.

--no-write

In test mode, do not write the contents of destination files.

-O fasp_port

Use the specified UDP port for FASP transfers. Default: 33001.

--overwrite={always|never|diff|diff+older|older}

Overwrite files at the destination with source files of the same name based on the method. Default:
always. Use with --compare and --resume. method can be the following:

• always – Always overwrite the file.
• never – Never overwrite the file. If the destination contains partial files that are older or the

same as the source files and --resume is enabled, the partial files resume transfer. Partial files
with checksums or sizes that differ from the source files are not overwritten.

• diff – Overwrite the file if it is different from the source, depending on the compare method
(default is size). If the destination is object storage, diff has the same effect as always.

If resume is not enabled, partial files are overwritten if they are different from the source,
otherwise they are skipped. If resume is enabled, only partial files with different sizes or
checksums from the source are overwritten; otherwise, files resume.

• diff+older – Overwrite the file if it is older and different from the source, depending on the
compare method (default is size). If resume is not enabled, partial files are overwritten if
they are older and different from the source, otherwise they are skipped. If resume is enabled,
only partial files that are different and older than the source are overwritten, otherwise they are
resumed.

• older – Overwrite the file if its timestamp is older than the source timestamp.

-P ssh-port

Use the specified TCP port to initiate the FASP session. (Default: 22)

-p

Preserve file timestamps for access and modification time. Equivalent to setting --preserve-
modification-time, --preserve-access-time, and --preserve-creation-

 | ascp4: Transferring from the Command Line with Ascp 4 | 140

time. Timestamp support in object storage varies by provider; consult your object storage
documentation to determine which settings are supported.

On Windows, modification time may be affected when the system automatically adjusts
for Daylight Savings Time (DST). For details, see the Microsoft KB article, http://
support.microsoft.com/kb/129574.

On Isilon IQ OneFS systems, access time (atime) is disabled by default. In this case, atime is the
same as mtime. To enable the preservation of atime, run the following command:

sysctl efs.bam.atime_enabled=1

--policy={fixed|high|fair|low}

Transfer according to the specified policy:

• fixed – Attempt to transfer at the specified target rate, regardless of network capacity. Content
is transferred at a constant rate and the transfer finishes in a guaranteed time. The fixed policy
can consume most of the network's bandwidth and is not recommended for most types of file
transfers. This option requires a maximum (target) rate value (-l).

• high – Adjust the transfer rate to fully utilize the available bandwidth up to the maximum rate.
When congestion occurs, the transfer rate is twice as fast as transfer with a fair policy. This
option requires maximum (target) and minimum transfer rates (-l and -m).

• fair – Adjust the transfer rate to fully utilize the available bandwidth up to the maximum rate.
When congestion occurs, bandwidth is shared fairly by transferring at an even rate. This option
requires maximum (target) and minimum transfer rates (-l and -m).

• low – Adjust the transfer rate to use the available bandwidth up to the maximum rate. Similar
to fair mode, but less aggressive when sharing bandwidth with other network traffic. When
congestion occurs, the transfer rate is reduced to the minimum rate until other traffic decreases.

If --policy is not set, ascp4 uses the server-side policy setting (fair by default).

--preserve-access-time

Preserve the file timestamps (currently the same as -p).

--preserve-creation-time

Preserve the file timestamps (currently the same as -p).

--preserve-file-owner-gid

--preserve-file-owner-uid

(Linux, UNIX, and macOS only) Preserve the group information (gid) or owner information (uid)
of the transferred files. These options require that the transfer user is authenticated as a superuser.

--preserve-modification-time

Preserve the file timestamps (currently the same as -p).

--preserve-source-access-time

Preserve the file timestamps (currently the same as -p).

-q

Run ascp4 in quiet mode. This option disables the progress display.

-R remote_log_dir

Log to the specified directory on the remote host rather than the default directory. Note: Client users
that are restricted to aspshell are not allowed to use this option.

--read-threads=num

Use the specified number of storage "read" threads (sender only). Default: 2. To set "write" threads
on the receiver, use --write-threads.

http://support.microsoft.com/kb/129574
http://support.microsoft.com/kb/129574

 | ascp4: Transferring from the Command Line with Ascp 4 | 141

Note: If more than one read thread is specified for a transfer that uses --file-list, the files in
the file list must be unique. Duplicates can produce unexpected results on the destination.

--remote-memory=bytes

Allow the remote ascp4 process to use no more than the specified memory. Default: 256 MB.

--resume

Resume a transfer rather than re-transferring the content if partial files are present at the destination
and they do not differ from the source file based on the --compare method. If the source and
destination files do not match, then the source file is re-transferred. See -k for another way to
enable resume.

--scan-threads=num

Use the specified number of directory "scan" threads (sender only). Default: 2.

--sparse-file

Enable ascp4 to write sparse files to disk. This option prevents ascp4 from writing zero content
to disk for sparse files; ascp4 writes a block to disk if even one bit is set in that block. If no bits
are set in the block, ascp4 does not write the block (ascp4 blocks are 64 KB by default).

--src-base=prefix

Strip the specified prefix from each source path. The remaining portion of the source path is
kept intact at the destination. Available only in send mode. For usage examples, see Ascp File
Manipulation Examples on page 106.

Use with URIs: The --src-base option performs a character-to-character match with the source
path. For object storage source paths, the prefix must specify the URI in the same manner as the
source paths. For example, if a source path includes an embedded passphrase, the prefix must also
include the embedded passphrase otherwise it will not match.

--symbolic-links={follow|copy|skip}

Handle symbolic links using the specified method. For more information on symbolic link handling,
see Symbolic Link Handling on page 122. On Windows, the only option is skip. On other
operating systems, this option takes following values:

• follow – Follow symbolic links and transfer the linked files. (Default)
• copy – Copy only the alias file. If a file with the same name exists on the destination, the

symbolic link is not copied.
• skip – Skip symbolic links. Do not copy the link or the file it points to.

-T

Disable in-transit encryption for maximum throughput.

-u user_string

Define a user string for pre- and post-processing. This string is passed to the pre- and -post-
processing scripts as the environment variable $USERSTR.

--user=username

Authenticate the transfer using the specified username. Use this option instead of specifying the
username as part of the destination path (as user@host:file).

Note: If you are authenticating on a Windows machine as a domain user, the transfer server strips
the domain from the username. For example, Administrator is authenticated rather than
DOMAIN\Administrator. Thus, you must specify the domain explicitly.

--worker-threads=num

Use the specified number of worker threads for deleting files. On the receiver, each thread deletes
one file or directory at a time. On the sender, each thread checks for the presences of one file or
directory at a time. Default: 1.

--write-threads=num

 | ascp4: Transferring from the Command Line with Ascp 4 | 142

Use the specified number of storage "write" threads (receiver only). Default: 2. To set "read" threads
on the sender, use --read-threads.

For transfers to object or HDFS storage, write threads cannot exceed the maximum number of
jobs that are configured for Trapd. Default: 15. To use more threads, open /opt/aspera/etc/
trapd/trap.properties on the server and set aspera.session.upload.max-jobs
to a number larger than the number of write threads. For example,

Number of jobs allowed to run in parallel for uploads.
Default is 15
aspera.session.upload.max-jobs=50

-X rexmsg_size

Limit the size of retransmission requests to no larger than the specified size, in bytes. Max: 1440.

-Z dgram_size

Use the specified datagram size (MTU) for FASP transfers. Range: 296-65535 bytes. Default: the
detected path MTU.

As of version 3.3, datagram size can be specified on the server by setting <datagram_size> in
aspera.conf. The server setting overrides the client setting, unless the client is using a version
of ascp that is older than 3.3, in which case the client setting is used. If the pre-3.3 client does not
set -Z, the datagram size is the discovered MTU and the server logs the message "LOG Peer client
doesn't support alternative datagram size".

Ascp 4 Transfers with Object Storage
Files that are transferred with object storage are sent in chunks through the Aspera Trapd service. By default, ascp4
uses 64 KB chunks and Trapd uses 1 MB chunks; this mismatch in chunk size can cause ascp4 transfers to fail.

To avoid this problem, take one of the following actions:

1. Set the chunk size (in bytes) in the server's aspera.conf. This value is used by both ascp4 and Trapd, so the
chunk sizes match.

To set a global chunk size, run the following command:

 asconfigurator -x
 "set_node_data;transfer_protocol_options_chunk_size,value"

Where value is between 256 KB (262144 bytes) and 1 MB (1048576 bytes).

To set a chunk size for the user, run the following command:

 asconfigurator -x
 "set_user_data;user_name, username;transfer_protocol_options_chunk_size,value"

2. Set the chunk size in the client's aspera.conf to the Trapd chunk size.

If Trapd is using the default chunk size, run the following command to set the chunk size to 1 MB:

 asconfigurator -x
 "set_node_data;transfer_protocol_options_chunk_size,1048576"

3. Set the chunk size in the client command line.

Run the ascp4 session with the chunk size setting: --chunk-size=1048576.

 | ascp4: Transferring from the Command Line with Ascp 4 | 143

Ascp 4 Examples

The command options for ascp4 are generally similar to those for ascp. The following examples demonstrate
options that are unique to Ascp 4. These options enable reading management commands, transfer TCP and UDP data
streams, and enable read/write concurrency.

For Ascp examples, see Ascp Command Reference on page 89 and Ascp Transfers with Object Storage and
HDFS on page 108. See Comparison of Ascp and Ascp 4 Options on page 129 for differences in option
availability and behavior.

• Read FASP4 management commands

Read management commands V4 from management port 5000 and execute the management commands. The
management commands version 4 are PUT, WRITE and CLOSE.

 ascp4 -L /tmp/client-logs -R /tmp/server-logs --faspmgr-io -M 5000
 localhost:/tmp

• Streaming

See Ascp 4 Data Streaming Examples on page 146.
• Increase concurrency

The following command runs ascp4 with two scan threads and eight read threads on the client, and eight meta
threads and 16 write threads on the server.

 ascp4 -L /tmp/logs -R /tmp/logs -l1g --scan-threads=2 --read-threads=8 --
write-threads=16 --meta-threads=8 /data/100K aspera@10.0.113.53:/data

Built-in I/O Providers
Input/Output providers are library modules that abstract I/O scheme in Ascp 4 architecture. Ascp 4 has the following
built-in I/O providers:

• file (as a simple path or file://path)
• TCP (as tcp://192.168.120.11)
• UDP (as udp://233.3.3.3)

File provider

The local disk can be specified for ascp4 I/O by using a simple path or URL that starts with file. The following
paths identify the same file (/test/ascp4.log) on the disk:

file:////test/ascp4.log

/test/ascp4.log

file://localhost:/test/ascp4.log

Similarly, the following URLs identify the same file (test/ascp4.log) on the disk:

file:///test/ascp4.log

test/ascp4.log

TCP provider

A TCP data stream can be used for ascp4 I/O by specifying a URL that starts with tcp. ascp4 reads TCP data
from the source and writes TCP data on the destination. Use the following format to specify a TCP provider on the
source or destination:

tcp://ip_address:port[?option=value[&option=value]]

 | ascp4: Transferring from the Command Line with Ascp 4 | 144

The TCP provider of the sender can also be specified with the following format:

tcp://:port[?option=value[&option=value]]

With this format, ascp4 listens on the specified port up to a specified time (maxidle, see the following description
of options for TCP provider URLs).

The TCP provider URL accepts the following options:

port=N — Set the network port number, default: 0.
iosize=N — Specify the read/write size, default: 32 KB.
maxsize=N — Set the maximum stream length, in bytes, no default.
maxtime=N — Set the maximum stream duration, in seconds, no default.
maxidle=N — Set the maximum idle duration, in seconds, default: 10 sec.
rcvbufsz=N — Set the receive buffer size, default: 4 MB.
sndbufsz=N — Set the send buffer size, default: 4 MB.
ifaddr=ip_address — Specify the TCP connection interface address.
srcaddr=ip_address — Specify the TCP connection source-specific address.

UDP provider

A UDP data stream can be specified for ascp4 I/O by using a URL that starts with udp. If the UDP stream is a
multicast IP address, then ascp4 connects to the multicast address. ascp4 reads the UDP datagrams on the source
and writes UDP datagrams on the destination. A UDP-provider filepath has the following format:

udp://ip_address:port[?option=value[&option=value]]

The UDP provider URL accepts the following options:

pktbatch={0|1} — Enable packet batching in read/write. Default: 1.
maxsize=N — Set the maximum stream length. Default: unlimited.
maxtime=N — Set the maximum stream duration, in seconds. Default: unlimited.
maxidle=N — Set the maximum idle duration, in seconds. Default: unlimited.
rcvbufsz=N — Set the receive buffer size. Default: 10 MB.
sndbufsz=N — Set the send buffer size. Default: 10 MB.
ifaddr=ip_address — Set the multicast interface. Default: 0.0.0.0.
srcaddr=ip_address — Set the multicast source for IGMPb3 source-specific multicast.
ttl=N — Set the multicast time-to-live. Default: 1.
loopback=N — Set the multicast loopback. Default: 1.
dontfrag=N — Prevent fragmentation of outgoing packets. Default: 0.

Data Streaming Command Syntax
The ascp4 that is installed with HST Server can be used for data streaming as well as regular file transfers. The
command line is similar to a regular ascp4 file transfer, but the source and destination are URI paths. The license
prohibits video streaming. A separate product, IBM Aspera Streaming for Video, is available for video streaming. For
more information, see the IBM Aspera Streaming for Video User Guide.

Required Configuration for Multicast-to-Multicast Transfers

The transfer user who authenticates the multicast-to-multicast data stream transfer must have no docroot configured
in aspera.conf. A file restriction can be set instead to restrict access.

Run the following command to unset a docroot and set a file restriction:

 asconfigurator -x
 "set_user_data;user_name,username;absolute,AS_NULL;file_restriction,|restriction"

https://downloads.asperasoft.com/en/downloads/60

 | ascp4: Transferring from the Command Line with Ascp 4 | 145

The restriction can be set to allow all access (*) or limited by protocol, hostname or path:

Restriction Format Example

By protocol udp://*

tcp://*

By protocol and hostname udp://hostname*

By protocol, hostname, and port tcp://hostname:5000*

General Command Line Usage

 ascp4 -m minimum_rate -l target_rate --mode=mode --host=remote_hostname
 --compression=none --user=username --read-threads=1 --write-
threads=1 input_uri output_uri

• ascp4 streaming supports two transfer directions: send and recv.
• The ascp4 command defaults to multiple threads, but for reliable and in-order transport of streams you must use

only one read and write thread by specifying --read-threads=1 --write-threads=1.
• The data stream source and destination can be udp://, tcp://, or file://. For more information, see Built-

in I/O Providers on page 143
• For command line examples, see Ascp 4 Data Streaming Examples on page 146.

Recommended Rate Settings for Video Streams

ascp4 Option Description Recommendation

-m Minimum rate Take the encoding rate of the
transport stream and add 1 Mbps.

-l Target rate Take the minimum rate and add 10%
of the minimum rate.

For example, if the encoding rate is 10 Mbps, use the following settings:

 ascp4 -m 11M -l 13M ...

Multicast URI Syntax
The input multicast URI and the output multicast URI uses the same syntax.

multicast_protocol_scheme://stream_ip_address:port?option=value&option=value...

The multicast protocol scheme can be either udp or mcast. If the IP address of your data stream is a multicast
address, ascp4 uses multicast regardless of the protocol scheme (in other words, both udp and mcast use
multicast). In order to use unicast addresses, you must use the udp scheme.

You can configure properties of the stream by adding options to the URI after the question mark (?), each separated
by an ampersand (&). The following table describes the supported options.

Option Description Default

pktbatch={1|0} How to handle packet read and
write. If 1, batch read and write UDP
datagrams. If 0, read and write one
packet at a time.

1

 | ascp4: Transferring from the Command Line with Ascp 4 | 146

Option Description Default

maxsize=maximum_size Maximum stream length No default

maxtime=maximum_time Maximum stream duration, in
seconds

No default

maxidle=maximum_time Maximum idle duration, in seconds No default

rcvbufsz=buffer_size Receive buffer size 10MB

sndbufsz=buffer_size Send buffer size 10MB

ifaddr=ip_address Multicast interface IP address 0.0.0.0

srcaddr=ip_address Multicast source IP address 0.0.0.0

ttl=hops Multicast time-to-live 1

loopback=boolean Multicast loopback 1

Ascp 4 Data Streaming Examples
Use the following examples as a guide for creating your own streaming transfers with Ascp 4.

• Send a multicast stream:

 ascp4 --mode=send --host=desthost --compression=none --read-
threads=1 --write-threads=1 udp://233.3.3.3:3000?loopback=1&ttl=2
 udp://233.4.4.4:3000?loopback=1&ttl=2

• Capture a local multicast stream and send it to the receiver as a UDP unicast stream:

 ascp4 --mode=send --host=desthost --compression=none --read-threads=1
 --write-threads=1 udp://233.3.3.3:3000?loopback=1&ttl=2 udp://
localhost:3000/

• Read a TCP stream from 192.168.10.10 port 2000 and send it to 10.10.0.51. On 10.10.0.51, write the stream to
localhost port 3000.

 ascp4 -l 6000 -m 5000 --host=10.10.0.51 --mode=send --read-threads=1 --
write-threads=1 tcp://192.168.10.10:2000 tcp://localhost:3000

• Send a multicast UDP stream on 233.3.3.3 port 3000 to host 192.168.0.11, then multicast the stream on 233.3.3.3
port 3001.

 ascp4 -l 6000 -m 5000 --host=192.168.0.11 --mode=send --read-threads=1 --
write-threads=1
 udp://233.3.3.3:3000/?pktbatch=0 udp://233.3.3.3:3001/?loopback=1

• Multicast using the same multicast IP address and varying the multicast port.

 ascp4 -L/opt/test-local-01 -R/opt/test-remote-01 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.1:3001?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.1:4001?
rcvbufsz=100M&loopback=0"
 ascp4 -L/opt/test-local-02 -R/opt/test-remote-02 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.1:3002?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.1:4002?
rcvbufsz=100M&loopback=0"

 | ascp4: Transferring from the Command Line with Ascp 4 | 147

 ascp4 -L/opt/test-local-03 -R/opt/test-remote-03 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.1:3003?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.1:4003?
rcvbufsz=100M&loopback=0"
 ascp4 -L/opt/test-local-04 -R/opt/test-remote-04 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.1:3004?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.1:4004?
rcvbufsz=100M&loopback=0"

• Multicast using the same multicast port and varying the multicast IP address:

 ascp4 -L/opt/test-local-01 -R/opt/test-remote-01 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.1:3001?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.1:4001?
rcvbufsz=100M&loopback=0"
 ascp4 -L/opt/test-local-02 -R/opt/test-remote-02 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.2:3001?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.2:4001?
rcvbufsz=100M&loopback=0"
 ascp4 -L/opt/test-local-03 -R/opt/test-remote-03 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.3:3001?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.3:4001?
rcvbufsz=100M&loopback=0"
 ascp4 -L/opt/test-local-04 -R/opt/test-remote-04 -DD -m 12m -l
 15m --mode send --host 10.132.117.2 --user root --read-threads
 1 --write-threads 1 --compression none "udp://233.33.3.4:3001?
sndbufsz=100MB&ifaddr=10.131.117.1" "udp://233.44.4.4:4001?
rcvbufsz=100M&loopback=0"

Configuring macOS Server for Multicast Streams
If you are sending or receiving multicast streams from a macOS server, multicast fails if the receiving or sending
interface is not the macOS default interface. If no default gateway is defined on a macOS server, the default interface
is en0. To use a different interface than the default, change the default interface for your server

Run the following commands:

 route delete default new_interface_ip
 route add default new_interface_ip

Example

Server Name en0 IP Address en5 IP Address

a4_1 10.211.1.61 10.215.1.61

a4_2 10.212.1.62 10.216.1.62

In this example, server a4_1 acts as the multicast receiver and sends the stream over UDP to server a4_2. Server a4_2
then broadcasts the multicast streams to waiting receivers. Since both servers are using a non-default interface (not

 | ascp4: Transferring from the Command Line with Ascp 4 | 148

en0) to receive and send the multicast streams, we must set the interface receiving and sending the multicast streams
as the server default interface.

Run the following command on a4_1:

 route delete default 10.215.0.1
 route add default 10.215.0.1

Run the following command on a4_2:

 route delete default 10.216.0.1
 route add default 10.216.0.1

Note: The interface IP addresses 10.215.0.1 and 10.216.0.1 routes are the primary gateways and route all
10.215.0.* and 10.216.0.* traffic, respectively.

Troubleshooting Stream Transfers

Multicast Transfer Fails with "Error: Empty file list from file/stdin"

This error might indicate that the transfer user has a docroot set in aspera.conf, which is not supported for
multicast-to-multicast transfers.

The transfer user who authenticates the multicast-to-multicast data stream transfer must have no docroot configured
in aspera.conf. A file restriction can be set instead to restrict access.

Run the following command to unset a docroot and set a file restriction:

 asconfigurator -x
 "set_user_data;user_name,username;absolute,AS_NULL;file_restriction,|restriction"

The restriction can be set to allow all access (*) or limited by protocol, hostname or path:

Restriction Format Example

By protocol udp://*

tcp://*

By protocol and hostname udp://hostname*

By protocol, hostname, and port tcp://hostname:5000*

Transfer from macOS Fails

To diagnose the problem, re-run the stream transfer with the logging level set to debug by adding -DD to the
command. After the transfer fails, open the log file (homedir/Library/Logs/Aspera/) and search for an ERR
response.

ERR udp_io_open: failed to set rcvbugsz=10485760 (e=55)(ENOBUFS)

This error indicates that the socket buffer size on the Mac computer is too small to send or receive UDP packets. To
increase the socket buffer size, specify a large buffer size by adding the following parameters to the URL:

url/?rcvbufsz=4000000&sndbufsz=4000000

With these parameters, a transfer to and from a Mac computer is written similar to the following example:

 ascp4 -DD -m 12m -l 15m --mode send --host 10.13.117.12 --user root --read-
threads 1 --write-threads 1 --compression none "udp://233.13.13.2:3002/?

 | Watch Folders and the Aspera Watch Service | 149

rcvbufsz=4000000&sndbufsz=4000000" "udp://233.14.14.2:4002/?
rcvbufsz=4000000&sndbufsz=4000000"

Watch Folders and the Aspera Watch Service

Introduction to Watch Folders and the Aspera Watch Service
Watch Folders and the Aspera Watch Service offer tools for easily monitoring file system changes in real-time and
automatically transferring new and modified files.

Watch Folders

Watch Folders enables large-scale, automated file and directory transfers, including ultra-large directories with
over 10 million items and directories with "growing" files. Watch Folders use input from asperawatchd to automate
transfers of files added to or modified in a source folder. They can be configured to push from the local server or pull
from a remote server. Remote servers can be HST Server, HST Endpoint, and IBM Aspera Shares servers, as well
as servers in object storage. Push Watch Folders can use IBM Aspera on Cloud and IBM Aspera Transfer Cluster
Manager nodes for a destination.

For more information, see:

• Watch Folders on page 154
• IBM Aspera Console Admin Guide: Working with Watch folders

The Aspera Watch Service

The Aspera Watch Service (asperawatchd) is a file system change detection and snapshot service that is
optimized for speed, scale, and distributed sources. On file systems that have file system notifications, changes in
source file systems (new files and directories, deleted items, and renames) are detected immediately, eliminating
the need to scan the file system. On file systems without file notifications, such as object storage, Solaris, AIX, and
Isilon, file system scans are automatically triggered.

The Aspera Watch Service monitors changes to the file system by taking snapshots and analyzing the difference
between them. Users create watches by subscribing to a watch service and specifying the part of the file system to
watch. You can use the output from asperawatchd to generate a source file list for ascp and async sessions.

For more information, see:

• Starting Aspera Watch Services and Creating Watches on page 201
• Watch Service Configuration on page 203
• Transferring and Deleting Files with the Aspera Watch Service on page 206
• Aspera Sync with Aspera Watch Service Session Examples on page 250

The IBM Aspera Run Service (asperarund)

Both asperawatchd and asperawatchfolderd are managed by asperarund, which stores asperawatchd and
asperawatchfolderd configurations in its database. It automatically starts services when they are added and restarts
services if they fail. It also enables admins to start services under different users without switching between accounts,
and apply logging and database configurations to all services.

Similar to other Aspera services, asperarund starts automatically upon installation and runs as a system daemon
(asperarund).

For more information on asperarund, see Creating, Managing, and Configuring Services on page 151.

https://downloads.asperasoft.com/en/documentation/3

 | Watch Folders and the Aspera Watch Service | 150

Choosing User Accounts to Run Watch Folder Services
Run asperawatchd and asperawatchfolderd under a user with access to the area of your file system in which you
intend to create a watch and Watch Folder. In most cases, the services are run under one user who has access to your
entire file system, and watches and Watch Folders are created for specific areas of the file system.

You can also run multiple Watch and Watch Folder services under different users if that is required by your storage
configuration or user access restrictions. For example, if your file system includes different mounted storages and
no single user can access files in all mounted storages, or if your administrative account has access to the entire file
system but your policy prohibits running the services under that user account.

Configure services depending on your user account scenario:

Configuration #1

This is the simplest and most common configuration of Watch Folder services. Use an account that has read
permissions for all your files and follow the instructions in Creating a Push Watch Folder with aswatchfolderadmin
on page 155.

Configuration #2

If you cannot run Watch Folder services under the administrative account or you do not have a single user that has
access to the entire file system, run pairs of asperawatchd and asperawatchfolderd under enough users to access your
entire file system.

For example, if you have mounted storage from the marketing department that can only be accessed by user xasp1,
and another storage from the release team, which can only be accessed by user xasp2, run a pair of asperawatchd
and asperawatchfolderd under each user. Aspera recommends using the Node API to configure services and manage
Watch Folders in a multi-user context. You can interact with the Node API by using IBM Aspera Console or using
curl commands from the command line.

For more information on using Watch Folders with Console, see "Working with Watch Folders" in the IBM Aspera
Console Admin Guide.

https://downloads.asperasoft.com/en/documentation/3
https://downloads.asperasoft.com/en/documentation/3

 | Watch Folders and the Aspera Watch Service | 151

Creating, Managing, and Configuring Services
Both asperawatchd and asperawatchfolderd are managed by asperarund, which stores asperawatchd and
asperawatchfolderd configurations in its database. It automatically starts services when they are added and restarts
services if they fail. It also enables admins to start services under different users without switching between accounts,
and apply logging and database configurations to all services.

Similar to other Aspera services, asperarund starts automatically upon installation and runs as a system daemon
(asperarund).

Configuring Services

Configuration settings for asperarund, asperawatchd, and asperawatchfolderd are located in the <server> section of
aspera.conf.

To view current service settings, run the following command and look for settings that start with rund, watch,
watchd, and watchfolderd:

 asuserdata -a

For more information on configuring , see:

Watch Service Configuration on page 203
Watch Folder Service Configuration on page 164

Configuring asperarund

Logging and the Redis database used by asperarund is configured in aspera.conf:

<server>
 ...
 <rund>
 <log_level>log</log_level>
 <log_directory>AS_NULL</log_directory>
 <db_spec>redis:127.0.0.1:31415</db_spec>
 </rund>
 <watch>
 ...
 </watch>
</server>

Run the corresponding asconfigurator command to edit a setting:

 asconfigurator -x "set_server_data;rund_log_level,log_level"
 asconfigurator -x "set_server_data;rund_log_dir,path"
 asconfigurator -x "set_server_data;rund_db_spec,db_spec"

Setting Description Default

log_level The level of detail for asperarund
logging. Valid values are log,
dbg1, and dbg2.

log

log_directory Log to the specified directory. The Aspera logging file (Log Files
on page 330).

db_spec Use the specified Redis database,
which is defined with the syntax
redis:ip_address:port.

redis:127.0.0.1:31415 (the
localhost on port 31415).

 | Watch Folders and the Aspera Watch Service | 152

Starting asperarund

If asperarund is not running, then you cannot create Watch Folders or start a watch. The service is started
automatically during installation, but you might have to start it if it was disabled or stopped.

 ps ax | grep aspera

Locate asperarund in the output. If the status is not "R", start the service:

 /etc/rc.d/init.d/asperarund start

Creating Services

Both asperawatchd and asperawatchfolderd run under system users. These users must have a docroot configured
for them in aspera.conf and have write permissions to the default log directory if no custom log directory
is configured in aspera.conf. Aspera recommends running asperawatchd under , and selecting a user to run
asperawatchfolderd as described in Choosing User Accounts to Run Watch Folder Services on page 150. For more
information, see Starting Aspera Watch Services and Creating Watches on page 201 and Creating a Push Watch
Folder with aswatchfolderadmin on page 155.

To start asperawatchd and asperawatchfolderd, run the corresponding command:

 asperawatchd --user username
 asperawatchfolderd --user username

A Watch service must be running under a user before a Watch Folders service can be created for that user.

Managing Services

Use the asrun command line utility to view, enable, disable, or delete services.

The general syntax of asrun commands is:

 asrun send [options]

Run asrun send -h to output a complete list of options.

View a list of running services

 asrun send -l

The output is similar to the following:

[asrun send] code=0
{
 "services": [
 {
 "id":"52ca847a-6981-47e1-9f9b-b661cf298af1",
 "configuration": {
 "enabled":true,
 "run_as": {
 "pass": "*****",
 "user":""
 },
 "type":"WATCHD"
 },
 "state":"RUNNING",
 "state_changed_at":"2016-10-20T19:14:34Z"
 },
 {
 "id":"d109d1bd-7db7-409f-bb16-ca6ff9abb5f4",

 | Watch Folders and the Aspera Watch Service | 153

 "configuration": {
 "enabled":true,
 "run_as":{
 "pass": "*****",
 "user":""
 },
 "type":"WATCHFOLDERD"
 },
 "state":"RUNNING",
 "state_changed_at":"2016-10-20T00:11:19Z"
 }
]
}

The Watch Service configuration includes the string "type":"WATCHD" and, before this entry in the output, a
value for "id". The Watch Folder service includes the string: "type":"WATCHFOLDERD".

Disable a Service

Disabling a service stops the service but saves its configuration in the database. Disabled services can be restarted
(enabled).

For example, to disable the asperawatchfolderd service with "id":"d109d1bd-7db7-409f-bb16-
ca6ff9abb5f4":

 asrun send --disable="d109d1bd-7db7-409f-bb16-ca6ff9abb5f4"
[asrun send] code=0
null

Enable a Service

Enabling a stopped service starts the service. This command can be used to restart a service that stops due to an error,
without changing the configuration to trigger a reload of the configuration.

For example, to enable the asperawatchfolderd service with "id":"d109d1bd-7db7-409f-bb16-
ca6ff9abb5f4":

 asrun send --enable="d109d1bd-7db7-409f-bb16-ca6ff9abb5f4"
[asrun send] code=0
null

Delete a Service

Stop a service and remove its configuration from the database. A deleted service cannot be re-enabled.

Note: When deleting the asperawatchfolderd service, all existing Watch Folders started with that service are
also deleted.

For example, to delete the asperawatchfolderd service with "id":"d109d1bd-7db7-409f-bb16-
ca6ff9abb5f4":

 asrun send --delete="d109d1bd-7db7-409f-bb16-ca6ff9abb5f4"
[asrun send] code=0
null

 | Watch Folders and the Aspera Watch Service | 154

Watch Folders
Watch Folders can be created and managed in the command line, using the aswatchfolderadmin tool or the
API.

Getting Started with Watch Folders
Watch Folders enables large-scale, automated file and directory transfers, including ultra-large directories with
over 10 million items and directories with "growing" files. Watch Folders use input from asperawatchd to automate
transfers of files added to or modified in a source folder. They can be configured to push from the local server or pull
from a remote server. Remote servers can be HST Server, HST Endpoint, and IBM Aspera Shares servers, as well
as servers in object storage. Push Watch Folders can use IBM Aspera on Cloud and IBM Aspera Transfer Cluster
Manager nodes for a destination.

HST Server requires configuration to support Watch Folders. Whether you create Watch Folders using the command
line tool aswatchfolderadmin (Creating a Push Watch Folder with aswatchfolderadmin on page 155) or the
Watch Folder API (Creating a Push Watch Folder with the API on page 184), prepare your computer by taking the
following steps.

1. Ensure that asperarund is running.

Run the following command:

 systemctl status asperarund
Aspera Run Server: asperarund [RUNNING]

 service asperarund status
Aspera Run Server: asperarund [RUNNING]

2. Select or create a user account to run your services.

Watch Folder services must be run under a user with access to every area of your file system in which you intend
to create a Watch Folder. You can run multiple instances of these services under different users; however, most
deployments run these services under one user. Choose a user that has access to your entire file system.

If you need to run multiple instances of these services to access every area of your file system, see Choosing User
Accounts to Run Watch Folder Services on page 150.

3. Configure a docroot or restriction for the user.

Docroots and path restrictions limit the area of a file system or object storage to which the user has access. Users
can create Watch Folders and Watch services on files or objects only within their docroot or restriction.

Note: Users can have a docroot or restriction, but not both or Watch Folder creation fails.

To set up a docroot from the command line, run the following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

Restrictions must be set from the command line:

 asconfigurator -x
 "set_user_data;user_name,username;file_restriction,|path"

The restriction path format depends on the type of storage. In the following examples, the restriction allows access
to the entire storage; specify a bucket or path to limit access.

Storage Type Format Example

local storage For Unix-like OS:

• specific folder: file:////folder/*
• drive root: file:////*

 | Watch Folders and the Aspera Watch Service | 155

Storage Type Format Example

For Windows OS:

• specific folder: file:///c%3A/folder/*
• drive root: file:///c*

Amazon S3 and IBM Cloud Object Storage - S3 s3://*

Azure azu://*

Azure Files azure-files://*

Azure Data Lake Storage adl://*

Alibaba Cloud oss://*

Google Cloud gs://*

HDFS hdfs://*

With a docroot or restriction set up, the user is now an Aspera transfer user. Restart asperanoded to activate your
change:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

4. Ensure the user has permissions to write to the default log directory if no directory is specified.

For more information about configuring log directories, seeWatch Service Configuration on page 203.

5. Configure asperawatchd and asperawatchfolderd settings.

Though the default values are already optimized for most users, you can also configure the snapshot database,
snapshot frequency, logging, scan threads, and drop handling, among other features. For instructions, see Watch
Service Configuration on page 203 and Watch Folder Service Configuration on page 164.

Your system is now ready for Watch Folders.

To create a push Watch Folder, see Creating a Push Watch Folder with aswatchfolderadmin on page 155 or
Creating a Push Watch Folder with the API on page 184.

To create a pull Watch Folder, see Creating a Pull Watch Folder with aswatchfolderadmin on page 160 or Creating
a Pull Watch Folder with the API on page 189.

Creating a Push Watch Folder with aswatchfolderadmin
These instructions describe how to create a push Watch Folder by using the aswatchfolderadmin utility.
aswatchfolderadmin requires a JSON configuration file with the syntax introduced in 3.8.0 (described in the
following section). Push Watch Folders can still be created from JSON configuration files that follow the 3.7 version
syntax by using the Watch Folder API.

To create and manage Watch Folders by using the Watch Folder API or IBM Aspera Console, see Creating a Push
Watch Folder with the API on page 184 and the IBM Aspera Console Admin Guide.

When you create a Watch Folder, a Watch service subscription is automatically created to monitor the source
directory. In the rare case that the subscription is somehow deleted or impaired, Watch Folders automatically creates
a new subscription; however, the new subscription does not retain the file change history and all files in the source
directory are re-transferred.

Restrictions on all Watch Folders

• Only local-to-remote (push) and remote-to-local (pull) configurations are supported. Remote-to-remote and local-
to-local are not supported.

https://downloads.asperasoft.com/en/documentation/3

 | Watch Folders and the Aspera Watch Service | 156

• Growing files are only supported for local sources (push Watch Folders) and must be authenticated by a transfer
user (password or SSH key file). The transfer user cannot be restricted to aspshell and the source cannot be in
object storage.

• Source file archiving is not supported if the Watch Folder source is in object storage.
• IBM Aspera Shares endpoints must have version Shares version 1.9.11 with the Watch Folder patch or a later

version.

To create a push Watch Folder:

1. Prepare your computer as described in Getting Started with Watch Folders on page 154.

2. Create a Watch Service and Watch Folder service for your user on the local computer.

 asperawatchd --user username
 asperawatchfolderd --user username

3. Verify that the services are running for the user.

 asrun send -l

The output is similar to the following:

[asrun send] code=0
{
 "services": [
 {
 "id":"52ca847a-6981-47e1-9f9b-b661cf298af1",
 "configuration": {
 "enabled":true,
 "run_as": {
 "pass": "*****",
 "user":""
 },
 "type":"WATCHD"
 },
 "state":"RUNNING",
 "state_changed_at":"2016-10-20T19:14:34Z"
 },
 {
 "id":"d109d1bd-7db7-409f-bb16-ca6ff9abb5f4",
 "configuration": {
 "enabled":true,
 "run_as":{
 "pass": "*****",
 "user":""
 },
 "type":"WATCHFOLDERD"
 },
 "state":"RUNNING",
 "state_changed_at":"2016-10-20T00:11:19Z"
 }
]
}

Use the aswatchadmin and aswatchfolderadmin utilities to retrieve a list of running daemons. Daemons
have the same name as the user for which they are running. For example, if you used the user to run your
services, you should see the daemon listed when you run the following commands:

 aswatchadmin query-daemons
[aswatchadmin query-daemons] Found a single daemon:

 | Watch Folders and the Aspera Watch Service | 157

 aswatchfolderadmin query-daemons
[aswatchfolderadmin query-daemons] Found a single daemon:

4. Create a JSON configuration file for your Watch Folder.

The Watch Folder JSON file describes the source, target, and authentication to the remote server, and can also
specify transfer session settings, file handling and post-processing, filters, and growing file handling.

A basic push Watch Folder configuration file has the following syntax:

{
 "source": {
 "path": "source_directory"
 },
 "target": {
 "path": "target_directory",
 "location": {
 "type": "REMOTE",
 "host": "hostname",
 "port": port,
 "authentication": {
 "type": "authentication_mode",
 "user": "username",
 "pass": "password"
 "keypath": "key_file"
 }
 }
 },
 "watchd": {
 "scan_period": "scan_period"
 }
}

For a full configuration reference, see Watch Folder JSON Configuration File Reference on page 165.

Field Description Default

source path The local source directory. If the transfer user who is associated with the
Node API user is configured with a docroot, then the path is relative to
that docroot. If the transfer user is configured with a restriction, then the
path is the absolute or UNC path.

N/A

target path The remote target directory. For SSH and Node API user authentication,
the path is relative to the user's docroot, or the absolute path if the transfer
user is configured with a restriction. For Shares authentication, the path
is the share name and, optionally, a path within the share. For access key
authentication, the path is relative to the storage specified in the access
key.

N/A

location type Set "type" to "REMOTE" for the remote server. "type": "REMOTE"
is assumed if "host" is specified.

"REMOTE"

host The host IP address, DNS, hostname, or URL of the remote file system.
Required. The host can be specified with an IPv4 or IPv6 address. The
preferred format for IPv6 addresses is x:x:x:x:x:x:x:x, where each of
the eight x is a hexadecimal number of up to 4 hex digits. Zone IDs (for
example, %eth0) can be appended to the IPv6 address.

N/A

port The port to use for authentication to the remote file system. By default, if
the authentication type is SSH, then the SSH port for the ascp process
(the value for tcp_port in the "transport" section) is used. If the
authentication type is NODE_BASIC, 9092 is used. For Shares, IBM

If authentication
type is SSH,
then default is
the value for

 | Watch Folders and the Aspera Watch Service | 158

Field Description Default

Aspera Transfer Cluster Manager, or IBM Aspera on Cloud endpoints,
enter 443.

tcp_port in
the "transport"
section
(default: 22). If
authentication
type is
NODE_BASIC,
then default is
9092.

authentication
type

How Watch Folders authenticates to the remote server. Valid values are
SSH or NODE_BASIC.

For SSH, authenticate with a transfer user's username and password, or
specify the username and the path to their SSH private key file.

For NODE_BASIC, authenticate with a Node API username and
password, Shares credentials, or an access key ID and secret.

Sample JSON syntax for each authentication type is provided following
this table.

NODE_BASIC

user The username for authentication. Required. Depending on the type of
authentication, it is the transfer user's username, Node API username,
Shares username, or access key ID.

N/A

pass The password for authentication. Depending on the type of authentication,
it is the transfer user's password, the Node API user's password, the Shares
user's password, or the access key secret.

Required for SSH authentication if "keypath" is not specified

N/A

keypath For SSH authentication with an SSH key, the path to the transfer user's
SSH private key file.

Required for SSH authentication if "pass" is not specified

N/A

watchd identifier The daemon associated with the Watch Service that is used to monitor
the file system. Optional. Required only when you want to use a Watch
Service that is run by a user who is not associated with the Node API user
or access key. Use to specify the daemon on the remote host if it is not
xfer.

N/A

scan_period The time between file system scans of the watches (from end of one
to start of the next). These scans are independent of the snapshot
minimum interval and snapshot minimum changes to ensure that changes
are identified. To never scan (asperawatchd relies entirely on file
notifications), set to "infinite". On file systems without file notifications,
such as object storage, mounted storage (NFS), Solaris, AIX, and Isilon,
file system scans triggered by the scan period are used to detect file
changes. In this case, set the scan period to frequently scan for changes.
On operating systems that support file notifications (Linux, Windows,
macOS), asperawatchd uses the file notifications as the primary means for
detecting changes, and the scan period serves as a backup. In this case,
the default value of 30 minutes is usually acceptable and no change is
necessary. To never scan, and rely entirely on file notifications, set to
infinite.

30m

 | Watch Folders and the Aspera Watch Service | 159

Field Description Default

For pull Watch Folders, file systems scans that are triggered by
scan_period are the sole means for detecting changes in the source
directory.

Lower scan periods detect changes faster but can result in greater resource
consumption, particularly for object storage.

Note: The value for scan period cannot be empty, otherwise the
configuration is rejected.

Save the configuration file. The path to the configuration file is used in the next step.

5. Create the Watch Folder.

 aswatchfolderadmin create-folder daemon -f json_file

Where daemon is the user that is running the Watch Folder services and json_file is the path to the Watch Folder
configuration file. If you do not know the daemon, retrieve a list of running daemons by running the following
command:

 aswatchfolderadmin query-daemons
[aswatchfolderadmin query-daemons] Found a single daemon:

Daemons have the same name as the user for which they are running. For example, if you used the user to run
your services, you should see the daemon listed.

For example, using the daemon and a valid JSON file, watchfolderconf.json, the output of the
aswatchfolderadmin command should look like the following:

 aswatchfolderadmin create-folder -f watchfolder_conf.json
 [aswatchfolderadmin create-folder]
 Successfully created instance b394d0ee-1cda-4f0d-b785-efdc6496c585.

If aswatchfolderadmin returns err=28672, confirm that the user's docroot allows access to the source
directory. If you need to make changes to your docroot, see Updating the Docroot or Restriction of a Running
Watch Folder Service on page 200.

If aswatchfolderadmin returns err=2, a Watch Service is not running for the user. See the previous section
for instructions on starting a Watch Service.

6. Verify that the Watch Folder is running.

To retrieve a list of running Watch Folders, run the following command:

 aswatchfolderadmin query-folders daemon_name

For example:

 aswatchfolderadmin query-folders
 [aswatchfolderadmin query-folders] Found a
 single watchfolder:
 b394d0ee-1cda-4f0d-b785-efdc6496c585

7. Test your Watch Folder.

If the source directory is empty, add files to it. If the configuration is correct, Watch Folders detects the new files,
starts a transfer, and the new files appear in the target directory.

If the source directory is not empty, open the target directory to view files that are automatically transferred as
Watch Folders starts.

 | Watch Folders and the Aspera Watch Service | 160

Once Watch Folders are created, manage them by using the aswatchfolderadmin utility. For information, see
Managing Watch Folders with aswatchfolderadmin on page 182.

Creating a Pull Watch Folder with aswatchfolderadmin
These instructions describe how to create a pull Watch Folder by using the aswatchfolderadmin utility.
aswatchfolderadmin requires a JSON configuration file with the syntax introduced in 3.8.0 (described in the
following section). Pull Watch Folders can still be created from JSON configuration files that follow the 3.7 version
syntax by using the Watch Folder API.

To create and manage Watch Folders by using the Watch Folder API or IBM Aspera Console, see Creating a Push
Watch Folder with the API on page 184 and the IBM Aspera Console Admin Guide.

When you create a Watch Folder, a Watch service subscription is automatically created to monitor the source
directory. In the rare case that the subscription is somehow deleted or impaired, Watch Folders automatically creates
a new subscription; however, the new subscription does not retain the file change history and all files in the source
directory are re-transferred.

Restrictions on all Watch Folders

• Only local-to-remote (push) and remote-to-local (pull) configurations are supported. Remote-to-remote and local-
to-local are not supported.

• Growing files are only supported for local sources (push Watch Folders) and must be authenticated by a transfer
user (password or SSH key file). The transfer user cannot be restricted to aspshell and the source cannot be in
object storage.

• Source file archiving is not supported if the Watch Folder source is in object storage.
• IBM Aspera Shares endpoints must have version Shares version 1.9.11 with the Watch Folder patch or a later

version.

Restrictions on Pull Watch Folders

• The remote server must be running HST Server or HST Endpoint version 3.8.0 or newer.
• Pull Watch Folders must be authenticated with an access key ID and secret, a Node API username and password,

or IBM Aspera Shares credentials. SSH authentication is not supported for remote sources.
• Pull Watch Folders that use Node API authentication cannot be authenticated with a Node API user whose

associated transfer user is configured with a restriction (the Watch Folder status is reported as impaired). Edit the
transfer user's configuration to use a docroot, restart asperanoded, and the Watch Folder recovers automatically.

• Pull Watch Folders cannot use IBM Aspera on Cloud (including IBM Aspera on Cloud transfer service nodes) or
IBM Aspera Transfer Cluster Manager nodes as the remote source.

• Pull Watch Folders do not support growing files.

To create a pull Watch Folder:

1. Create a Watch Service on the remote server.

If you have SSH access to the server, create the service from the server's command line.

a) Create the service.

 asperawatchd --user username

The username is for a system user with permissions to the source path.
b) Confirm that the service was created.

 aswatchadmin query-daemons

If the service exists, the following output is returned (in this example, the user is ""):

 aswatchadmin query-daemons
[aswatchadmin query-daemons] Found a single daemon:

https://downloads.asperasoft.com/en/documentation/3

 | Watch Folders and the Aspera Watch Service | 161

If other services are running on the server, other daemons are also returned.

If you do not have SSH access to the server, use the Node API from your local computer to create the service.
This approach requires that you have node credentials for the server. For instructions, see Creating a Pull Watch
Folder with the API on page 189.

2. Create a Watch Folder service for your user on the local computer.

 asperawatchfolderd --user username

3. Verify that the service is running for the user.

 asrun send -l

The output is similar to the following (in this example, the user is ""):

[asrun send] code=0
{
 "services": [
 {
 "id":"d109d1bd-7db7-409f-bb16-ca6ff9abb5f4",
 "configuration": {
 "enabled":true,
 "run_as":{
 "pass": "*****",
 "user":""
 },
 "type":"WATCHFOLDERD"
 },
 "state":"RUNNING",
 "state_changed_at":"2016-10-20T00:11:19Z"
 }
]
}

Use the aswatchadmin and aswatchfolderadmin utilities to retrieve a list of running daemons. Daemons
have the same name as the user for which they are running. For example, if you used the user to run your
services, you should see the daemon listed when you run the following commands:

 aswatchadmin query-daemons
[aswatchadmin query-daemons] Found a single daemon:

 aswatchfolderadmin query-daemons
[aswatchfolderadmin query-daemons] Found a single daemon:

4. Create a JSON configuration file for your Watch Folder.

The Watch Folder JSON file describes the source, target, and authentication to the remote server, and can also
specify transfer session settings, file handling and post-processing, filters, and growing file handling.

A basic pull Watch Folder configuration has the following syntax:

{
 "source": {
 "path": "source_directory",
 "location": {
 "type": "REMOTE",
 "host": "ip_address",
 "port": port,
 "authentication": {
 "type": "authentication_mode",

 | Watch Folders and the Aspera Watch Service | 162

 "user": "username",
 "pass": "password"
 }
 }
 },
 "target": {
 "path": "target_directory"
 },
 "watchd": {
 "scan_period": "scan_period",
 "identifier": "daemon"
 }
}

For a full configuration reference, see Watch Folder JSON Configuration File Reference on page 165.

Field Description Default

source path The source directory on the remote server. For SSH and Node
API user authentication, the path is relative to the associated
transfer user's docroot, or the absolute path if the transfer user is
configured with a restriction. For Shares authentication, the path is
the share name and, optionally, a path within the share. For access
key authentication, the path is relative to the storage specified in
the access key.

N/A

location type Set "type" to "REMOTE" for the remote server. "type":
"REMOTE" is assumed if "host" is specified.

"REMOTE"

host The host IP address, DNS, hostname, or URL of the remote
file system. Required. The host can be specified with an IPv4
or IPv6 address. The preferred format for IPv6 addresses is
x:x:x:x:x:x:x:x, where each of the eight x is a hexadecimal number
of up to 4 hex digits. Zone IDs (for example, %eth0) can be
appended to the IPv6 address.

N/A

port The port to use for authentication to the remote file system. By
default, if the authentication type is SSH, then the SSH port for
the ascp process (the value for tcp_port in the "transport"
section) is used. If the authentication type is NODE_BASIC, 9092
is used. For Shares, IBM Aspera Transfer Cluster Manager, or
IBM Aspera on Cloud endpoints, enter 443.

If authentication
type is SSH,
then default is
the value for
tcp_port in the
"transport" section
(default: 22). If
authentication type
is NODE_BASIC,
then default is 9092.

authentication type How Watch Folders authenticates to the remote server. Pull Watch
Folders must use NODE_BASIC and authenticate with a Node API
username and password, Shares credentials, or an access key ID
and secret.

NODE_BASIC

user The username for authentication. Required. Depending on the
type of authentication, it is the transfer user's username, Node API
username, Shares username, or access key ID.

N/A

pass The password for authentication, depending on the type of
authentication.

N/A

target path The target directory on the local computer, relative to the transfer
user's docroot.

N/A

 | Watch Folders and the Aspera Watch Service | 163

Field Description Default

watchd identifier The daemon associated with the Watch Service that is used to
monitor the file system. Optional. Required only when you want
to use a Watch Service that is run by a user who is not associated
with the Node API user or access key.

The system user that
is associated with
the Node API user
or access key.

scan_period The time between file system scans of the watches (from end
of one to start of the next). These scans are independent of the
snapshot minimum interval and snapshot minimum changes to
ensure that changes are identified. To never scan (asperawatchd
relies entirely on file notifications), set to "infinite". On file
systems without file notifications, such as object storage, mounted
storage (NFS), Solaris, AIX, and Isilon, file system scans triggered
by the scan period are used to detect file changes. In this case,
set the scan period to frequently scan for changes. On operating
systems that support file notifications (Linux, Windows, macOS),
asperawatchd uses the file notifications as the primary means for
detecting changes, and the scan period serves as a backup. In this
case, the default value of 30 minutes is usually acceptable and
no change is necessary. To never scan, and rely entirely on file
notifications, set to infinite.

For pull Watch Folders, file systems scans that are triggered by
scan_period are the sole means for detecting changes in the source
directory.

Lower scan periods detect changes faster but can result in greater
resource consumption, particularly for object storage.

Note: The value for scan period cannot be empty, otherwise the
configuration is rejected.

30m

Save the configuration file. The path to the configuration file is used in the next step.

5. Create the Watch Folder.

 aswatchfolderadmin create-folder daemon -f json_file

Where daemon is the user that is running the Watch Folder services and json_file is the path to the Watch Folder
configuration file. If you do not know the daemon, retrieve a list of running daemons by running the following
command:

 aswatchfolderadmin query-daemons
[aswatchfolderadmin query-daemons] Found a single daemon:

Daemons have the same name as the user for which they are running. For example, if you used the user to run
your services, you should see the daemon listed.

For example, using the daemon and a valid JSON file, watchfolderconf.json, the output of the
aswatchfolderadmin command should look like the following:

 aswatchfolderadmin create-folder -f watchfolder_conf.json
 [aswatchfolderadmin create-folder]
 Successfully created instance b394d0ee-1cda-4f0d-b785-efdc6496c585.

If aswatchfolderadmin returns err=28672, confirm that the user's docroot allows access to the source
directory. If you need to make changes to your docroot, see Updating the Docroot or Restriction of a Running
Watch Folder Service on page 200.

 | Watch Folders and the Aspera Watch Service | 164

If aswatchfolderadmin returns err=2, a Watch Service is not running for the user. See the previous section
for instructions on starting a Watch Service.

6. Verify that the Watch Folder is running.

To retrieve a list of running Watch Folders, run the following command:

 aswatchfolderadmin query-folders daemon_name

For example:

 aswatchfolderadmin query-folders
 [aswatchfolderadmin query-folders] Found a
 single watchfolder:
 b394d0ee-1cda-4f0d-b785-efdc6496c585

7. Test your Watch Folder.

If the source directory contains files, the Watch Folder collects them into a drop after the Watch service scan
interval passes and transfers them to the target.

Note: No files are transferred until the first scan interval passes. If the Watch service scan interval is set to the
default, files transfer after 30 minutes.

Once Watch Folders are created, manage them by using the aswatchfolderadmin utility. For information, see
Managing Watch Folders with aswatchfolderadmin on page 182.

Watch Folder Service Configuration
The configuration for asperawatchfolderd is in the <server> section of aspera.conf. It includes drop and file
management and enabling the use of raw options (ascp options that are not yet directly included in Watch Folders).

<server>
 <rund>...</rund>
 <watch>
 <log_level>log</log_level>
 <log_directory>AS_NULL</log_directory>
 <db_spec>redis:host:31415:domain</db_spec>
 <watchd>...</watchd>
 <watchfolderd>
 <remote_tmpdir_conf>hide</remote_tmpdir_conf>
 <purge_drops_max_age>1d</purge_drops_max_age>
 <purge_drops_max_files>9223372036854775807</
purge_drops_max_files>
 <raw_options>disable</raw_options>
 </watchfolderd>

To view the current settings, run the following command and look for settings that start with watch and
watchfolderd:

 asuserdata -a

Configuring asperawatchfolderd Settings

Configure asperawatchfolderd by using asconfigurator commands with this general syntax:

 asconfigurator -x "set_server_data;option,value"

Options and values are described in the following table.

 | Watch Folders and the Aspera Watch Service | 165

Watch Folder Configuration Options

Note: The logging and database configuration settings apply to both asperawatchd and asperawatchfolderd, and are
described in Watch Service Configuration on page 203.

asconfigurator option
aspera.conf setting

Description Default

watchfolderd_purge_drops_max_age
<purge_drops_max_age>

The maximum age of stored drops.
Drops older than this age are purged.

1d

watchfolderd_purge_drops_max_files
<purge_drops_max_files>

The maximum number files across
all drops. When this number is
exceeded, drops are purged until the
file count is less than the specified
number.

9223372036854775807

watchfolderd_raw_options
<raw_options>

Enable the use of new ascp options
in Watch Folders-initiated transfers
before the options are built into
the application. Valid values are
disable or enable.

disable

Watch Folder JSON Configuration File Reference
Watch Folders are configured by using a JSON configuration file. This article describes all the available configuration
options. For simple push and pull configuration examples that contain only the required options, see Creating a Push
Watch Folder with aswatchfolderadmin on page 155 and Creating a Pull Watch Folder with aswatchfolderadmin
on page 160.

To get a complete JSON schema that provides the default values, value options, and a description of each parameter,
run the following command:

 curl -i -u nodeuser:nodepassword https://{domain}:9092/schemas/
watchfolders/configuration

Sample JSON Configuration File (Pull Watch Folder with Node Authentication)

{
 "source": {
 "path": "/projectA",
 "location": {
 "type": "REMOTE",
 "host": "10.0.111.124",
 "port": 9092,
 "authentication": {
 "type": "NODE_BASIC",
 "user": "nodeuser1",
 "pass": "watchfoldersaregreat",
 }
 }
 },
 "target": {
 "path": "projectA"
 },
 "id":"b394d0ee-1cda-4f0d-b785-efdc6496c585",
 "cool_off":"30s",
 "snapshot_creation_period":"10s",
 "meta":{

 | Watch Folders and the Aspera Watch Service | 166

 "version":0,
 "name":"aspera_watchfolder"
 },
 "drop":{
 "detection_strategy":"COOL_OFF_ONLY",
 "cool_off":"5s"
 },
 "post_processing":{
 "source":{
 "type":"TRANSFER_NONE",
 "archive_dir":"watchfolder_sessions{$UUID}_{$DATETIME}"
 }
 },
 "filters":[
 {
 "type":"GLOB",
 "pattern":"*.txt",
 "rule":"INCLUDE"
 },
 {
 "type":"GLOB",
 "pattern":"/**",
 "rule":"EXCLUDE"
 }
],
 "packages":{
 "timeout":"10s",
 "parsers":[
 {
 "final_transfer":"LIST",
 "filters":[
 {
 "type":"REGEX",
 "rule":"INCLUDE",
 "pattern":".*\\.txt"
 },
 {
 "type":"REGEX",
 "rule":"EXCLUDE",
 "pattern":".*"
 }
]
 }
]
 },
 "transport":{
 "host":"",
 "user":"aspx2",
 "pass":"",
 "proxy":"dnat://aspx1:passwordsarecool@localhost:9001",
 "keypath":"",
 "fingerprint":"",
 "cookie":"",
 "tags":{
 },
 "error_handling":{
 "file":{
 "max_retries":3,
 "retry_timeout":"3s"
 },
 "drop":{
 "retry_period":"1m"
 }
 },

 | Watch Folders and the Aspera Watch Service | 167

 "regular":{
 "max_parallel":10,
 "connect_timeout":"10s",
 "policy":"FAIR",
 "min_rate":"0B",
 "target_rate":"10M",
 "tcp_port":22,
 "udp_port":33001,
 "read_blk_size":"",
 "write_blk_size":"",
 "datagram_size":"",
 "rexmsg_size":"",
 "cipher":"AES128",
 "overwrite":"DIFF",
 "resume":"NONE",
 "preserve_uid":false,
 "preserve_gid":false,
 "preserve_time":false,
 "preserve_creation_time":false,
 "preserve_modification_time":false,
 "preserve_access_time":false,
 "queue_threshold":"5s",
 "sample_period":"2s"
 },
 "growing_file": {
 "max_parallel":8,
 "policy":"FAIR",
 "min_rate":"",
 "target_rate":"10M",
 "tcp_port":22,
 "udp_port":33001,
 "datagram_size":"",
 "cipher":"AES128",
 "completion_timeout":"5s",
 "memory":"2M",
 "chunk_size":"128K",
 "force_send_after":"2s",
 "filters":[
 {
 "type":"REGEX",
 "rule":"INCLUDE",
 "pattern":".*\\.growing"
 },
 {
 "type":"REGEX",
 "rule":"EXCLUDE",
 "pattern":".*"
 }
]
 },
 "watchd" : {
 "scan_period":"30m",
 "identifier" : "root"
 }
}

Top Level Configuration

Watch Folders supports transfers between a local server and a remote server. For the local server, Watch Folders
requires only the local path, whether it is the source or target. For the remote server, Watch Folders requires the host
address, port for authentication, and authentication credentials. In the following example, the source is remote and the
target is local.

 | Watch Folders and the Aspera Watch Service | 168

Note: The header "X-aspera-WF-version:2017_10_23" is required when submitting POST, PUT, and
GET requests to /v3/watchfolders on servers that are version 3.8.0 or newer. This enables Watch Folders to parse the
JSON "source" and "target" objects in the format that was introduced in version 3.8.0.

{
 "source": {
 "path": "path",
 "location": {
 "type": "REMOTE",
 "host": "host",
 "port": port,
 "authentication": {
 "type": "SSH|NODE_BASIC",
 "user": "username",
 "pass": "password",
 "keypath": "key_file",
 "fingerprint: "ssh_fingerprint"
 }
 }
 },
 "target": {
 "path": "path"
 },
 "id":"watchfolder_id",
 "cool_off":"30s",
 "snapshot_creation_period":"10s",
 ...
}

Field Description Default

path The source or target directory. Required.

Local path: The path is relative to the docroot of the transfer user
associated with the node username. If the transfer user is configured
with a restriction, the path is the absolute or UNC path.

Remote path: For access key authentication, the path is relative
to the storage specified in the access key. For SSH and Node
API user authentication, the path is relative to the user's docroot,
configured, or the absolute or UNC path if the user is configured
with a restriction. For IBM Aspera Shares authentication, the path is
the share name and, optionally, a path within the share.

When asperawatchd detects a new file in the source directory,
asperawatchfolderd starts an ascp session to transfer the file to
target directory. The target directory must be within the docroot or
restriction set for the user running asperawatchd.

N/A

location type Set "type" to "REMOTE" for the remote server. For push Watch
Folders the remote server is the "target", for pull Watch Folders the
remote server is the "source". One endpoint must be remote and one
must be local. Local-to-local and remote-to-remote Watch Folders
are not supported.

"REMOTE"
is assumed if
"host" is
specified. "LOCAL"
is assumed if
"REMOTE" or
"host" is not
specified.

host The host IP address, DNS, hostname, or URL of the remote file
system. Required. The host can be specified with an IPv4 or IPv6

N/A

 | Watch Folders and the Aspera Watch Service | 169

Field Description Default

address. The preferred format for IPv6 addresses is x:x:x:x:x:x:x:x,
where each of the eight x is a hexadecimal number of up to 4 hex
digits. Zone IDs (for example, %eth0) can be appended to the IPv6
address.

port The port to use for authentication to the remote file system. By
default, if the authentication type is SSH, then the SSH port for the
ascp process (the value for tcp_port in the "transport" section)
is used. If the authentication type is NODE_BASIC, 9092 is used.
For Shares, IBM Aspera Transfer Cluster Manager, or IBM Aspera
on Cloud endpoints, enter 443.

If authentication
type is SSH, then
default is the value
for tcp_port in the
"transport" section
(default: 22). If
authentication type is
NODE_BASIC, then
default is 9092.

authentication type How Watch Folders authenticates to the remote server. Valid values
are SSH or NODE_BASIC.

For SSH, authenticate with a transfer user's username and password,
or specify the username and the path to their SSH private key file.

For NODE_BASIC, authenticate with a Node API username and
password, Shares credentials, or an access key ID and secret.

Sample JSON syntax for each authentication type is provided
following this table.

NODE_BASIC

user The username for authentication. Required. Depending on the
type of authentication, it is the transfer user's username, Node API
username, Shares username, or access key ID.

N/A

pass The password for authentication. Depending on the type of
authentication, it is the transfer user's password, the Node API user's
password, the Shares user's password, or the access key secret.

Required for SSH authentication if "keypath" is not specified

N/A

keypath For SSH authentication with an SSH key, the path to the transfer
user's SSH private key file.

Required for SSH authentication if "pass" is not specified

N/A

fingerprint The SSH fingerprint of the remote server. Aspera strongly
recommends using SSH fingerprint for security. If the fingerprint
does not match that of the server, the transfer fails with the error
"Remote host is not who we expected". For more information, see
Securing Your SSH Server on page 14 ("Configuring Transfer
Server Authentication").

N/A

id Value used to identify a Watch Folder. If this field is not configured
at creation, a UUID is automatically generated for and assigned to
the Watch Folder.

N/A

cool_off How long the Watch Folder service waits for files in the watched
folder to stop changing (stabilize) before taking a directory snapshot
and creating a drop. Default: 5s.

5s

snapshot_creation_periodThe interval during which Watch Folders groups new files in the
source directory into a drop. All files in a drop are transferred in
the same transfer session, post-processed together, and reported

3s

 | Watch Folders and the Aspera Watch Service | 170

Field Description Default

as a unit. Watch Folders uses asperawatchd to detect file system
modifications, and continuously creates snapshots to compute
the snapshot differential. A small value results in high temporal
resolution for detecting file system modifications, whereas a large
value improves asperawatchd performance. Default: 3s.

Authentication JSON Syntax

• SSH with password

"authentication": {
 "type": "SSH",
 "user": "username",
 "pass": "password",
 "fingerprint": "server_fingerprint"
}

• SSH with SSH key

"authentication": {
 "type": "SSH",
 "user": "username",
 "keypath": "key_path",
 "fingerprint": "server_fingerprint"
}

• NODE_BASIC with Node API username and password

"authentication": {
 "type": "NODE_BASIC",
 "user": "node_username",
 "pass": "node_password",
}

• NODE_BASIC with Shares credentials

"authentication": {
 "type": "NODE_BASIC",
 "user": "shares_username",
 "pass": "shares_password",
}

• NODE_BASIC with access key ID and secret

"authentication": {
 "type": "NODE_BASIC",
 "user": "access_key_id",
 "pass": "access_key_secret",
}

Meta Fields

{
 ...
 "meta":{
 "version":0,
 "name":"aspera_watchfolder"
 },
 ...

 | Watch Folders and the Aspera Watch Service | 171

}

Field Description Default

version Specifies the current version of the configuration. When updating
the configuration, this value must match the version stored by the
server. Otherwise, the update is rejected.

0

name The value specified in this field is added to the cookie reported by
ascp. Optional.

N/A

Drop Fields

Watch Folders groups new or updated files it detects in its source folder into "drops". A drop is defined by the
duration set by the snapshot_creation_period. All files in a given drop are transferred in the same transfer
session, post-processed together, and reported as a unit.

{
 ...
 "drop":{
 "detection_strategy":"COOL_OFF_ONLY",
 "cool_off":"5s"
 },
 ...
}

Field Description Default

detection_strategy The strategy that Watch Folders uses to create drops when new files
are added to the source folder:

• COOL_OFF_ONLY: The drop includes new files added to the
source folder within the duration of the cool_off field.

• TOP_LEVEL_FILES: Create a drop for each file placed in the
top level of the source folder.

• TOP_LEVEL_DIRS: Create a drop for each directory added to
the top level of the source folder. This drop also includes the sub-
directories and files in the top level directory.

COOL_OFF_ONLY

cool_off The time after the first new file is added to the source file during
which any other new files are included in the same drop. This
setting is only relevant for the COOL_OFF_ONLY detection
strategy. Aspera recommends choosing a multiple of the specified
snapshot_creation_period for predictable results.

5s

Post Processing Fields

Optionally, specify post-processing to do after a drop or file is successfully transferred.

{
 ...
 "post_processing":{
 "source":{
 "type":"TRANSFER_NONE",
 "archive_dir":"watchfolder_sessions{$UUID}_{$DATETIME}"
 }
 },
 ...

 | Watch Folders and the Aspera Watch Service | 172

}

Field Description Default

type The type of post-transfer processing. Files can be archived, deleted,
or retained after transfer of a drop. When files are archived or
deleted, source sub-directories are also deleted from the source,
unless the sub-directories were empty to start. File structure is
preserved in the archive.

• TRANSFER_NONE: Files stay in the source directory.
• TRANSFER_ARCHIVE: Files in the source directory are moved

to a final archive after successful transfer. This option is not
supported for sources in object storage.

• TRANSFER_DELETE: Files in the source directory are deleted
after successful transfer once the session completes.

• FILE_TRANSFER_DELETE: Files in the source directory are
deleted after each successfully transfers, rather than waiting for
the session to complete.

TRANSFER_NONE

archive_dir The destination of archived files, if the archive type is
TRANSFER_ARCHIVE. The path can be determined using the
following variables:

• {$TIMESTAMP} (Drop creation time in seconds since epoch)
• {$DAY_OF_MONTH} (Time format for drop's creation time)
• {$MONTH}

• {$YEAR}

• {$HOUR}

• {$MINUTE}

• {$SECOND}

• {$DATETIME} (alias for {$YEAR}{$MONTH}
{$DAY_OF_MONTH}-{$HOUR}{$MINUTE}{$SECOND})

• {$UUID}

• {$NAME}

• {$STATE}

• {$FILE::STATE} (such as SUCCEEDED, FAILED)

N/A

Filter Fields

Each filter object must include values for "type", "pattern", and "rule". Filters are applied in order. Watch Folders
supports glob and Regex filters. The glob filter system is the same as Ascp; see Using Filters to Include and Exclude
Files on page 116.

{
 ...
 "filters":[
 {
 "type":"GLOB",
 "pattern":"*.txt",
 "rule":"INCLUDE"
 },
 {
 "type":"GLOB",
 "pattern":"/**",
 "rule":"EXCLUDE"
 }

 | Watch Folders and the Aspera Watch Service | 173

],
 ...
}

Field Description Default

type The type of filter. Supported filters are GLOB and REGEX. N/A

pattern The filter pattern. N/A

rule The rule for the filter. Supported rules are INCLUDE and EXCLUDE.

Note: An include rule must be followed by at least one exclude rule,
otherwise all files are transferred because none are excluded. To
exclude all files that do not match the include rule, use /** for glob
or .* for Regex.

N/A

Packages Fields

Packages values are used to define an order for the transfer queue. For example, if file B depends on file A, file A
must be transferred before File B. Dependencies are defined by package files, where the package file contains the set
of files on which it depends. The package file (by default) is transferred after successfully transferring all the files
defined in the package file

{
 ...
 "packages":{
 "timeout":"10s",
 "parsers":[
 {
 "final_transfer":"LIST",
 "filters":[
 {
 "type":"REGEX",
 "rule":"INCLUDE",
 "pattern":".*\\.txt"
 },
 {
 "type":"REGEX",
 "rule":"EXCLUDE",
 "pattern":".*"
 }
],
 ...
 }
]
 },
 ...
}

Field Description Default

timeout How long to wait for file dependencies to be satisfied (files that must
be transferred before the last file are transferred) before considering
the dependency as unsatisfied.

10s

final_transfer Define the file to transfer last.

• LIST: The package file is transferred last, after all files in the
package file successfully transfer.

LIST

 | Watch Folders and the Aspera Watch Service | 174

Field Description Default

• LAST_FILE_IN_LIST: The last file in the package file is
transferred last.

filters Select files to include in the package as those that match the
specified filters. Use the same syntax as in the "filters" object.

N/A

The transport object

Use to configure authentication to the remote host.

}
 ...
 "transport":{
 "host":"198.51.100.22",
 "user":"aspx2",
 "pass":"",
 "token":"fiewle535etn23TEIW234n5sEWTnseonts",
 "proxy":"dnat://aspx1:@localhost:9001",
 "keypath":"~/.ssh/id_rsa",
 "fingerprint":"stringalsdjkfad",
 "tags":{
 "aspera": {
 "cloud-metadata": [
 {"location":"tarawera"}
]
 }
 },
 ...
 }
}

Option Description Default

host The host IP address, DNS, hostname, or URL. N/A

user The username for authentication. Required. Depending on the
type of authentication, it is the transfer user's username, Node API
username, Shares username, or access key ID.

N/A

pass The password for authentication. Depending on the type of
authentication, it is the SSH user's password, the Node API user's
password, the Shares user's password, or the access key secret.

This value is not required for SSH authentication that specifies a
value for "keypath".

N/A

token If required, the token string. Not valid for use with growing files. N/A

proxy If using, the address of an IBM Aspera Proxy server. The proxy
syntax is: dnat(s)://user:password@server:port

N/A

keypath If authenticating by SSH user and key, the path to the SSH user's
private key file.

Note: If a relative path is provided, the file at the relative
path is checked for existence. If the relative path is not found,
$HOME/.ssh/ is prepended to the relative path.

N/A

fingerprint The SSH fingerprint of the remote server. Aspera strongly
recommends using SSH fingerprint for security. If the fingerprint

N/A

 | Watch Folders and the Aspera Watch Service | 175

Option Description Default

does not match that of the server, the transfer fails with the error
"Remote host is not who we expected". For more information, see
Securing Your SSH Server on page 14 ("Configuring Transfer
Server Authentication").

tags Specify custom metadata in JSON format. The tags object is passed
directly to the ascp session. For more information on writing custom
metadata for uploads to object storage (as in the example), see
Writing Custom Metadata for Objects in Object Storage on page
111.

N/A

Error Handling Fields

Watch folder error handling distinguishes between two different error categories:

File-Specific Errors: These errors increase the file retry count every time a failure occurs. When the max_retries
count is reached, the file is marked as failed and the session attempts to transfer the next file in the drop queue. File-
specific error include all errors except the following:

• License error
• Authentication error
• Any other error in establishing an ascp session

Other Errors: These errors do not increase the file retry count. If a given error re-occurs again and again, the same
file is retried until the drop’s retry_period is exceeded. Then, the drop is marked as failed.

}
 ...
 "transport":{
 ...
 "error_handling":{
 "file":{
 "max_retries":3,
 "retry_timeout":"3s"
 },
 "drop":{
 "retry_period":"1m"
 }
 },
 ...
 }
}

Option Description Default

max_retries How many times to try transferring a file before the file is marked as
failed.

3

retry_timeout How frequently to retry file transfers. 3s

retry_period If no bytes are transferred during the specified period and no file is
completed, the drop and all remaining incomplete files in the drop
are marked as failed.

1m

The regular object

Use to configure Ascp transfer session options.

{

 | Watch Folders and the Aspera Watch Service | 176

 ...
 "transport":{
 ...
 "regular":{
 "max_parallel":10,
 "connect_timeout":"10s",
 "policy":"FAIR",
 "min_rate":"0B",
 "target_rate":"10M",
 "tcp_port":22,
 "udp_port":33001,
 "read_blk_size":"",
 "write_blk_size":"",
 "datagram_size":"",
 "rexmsg_size":"",
 "cipher":"AES128",
 "overwrite":"DIFF",
 "resume":"NONE",
 "preserve_uid":false,
 "preserve_gid":false,
 "preserve_time":false,
 "preserve_creation_time":false,
 "preserve_modification_time":false,
 "preserve_access_time":false,
 "queue_threshold":"5s",
 "sample_period":"2s",
 "content_protect_password":"ear_password"
 "raw_options":["-L","/tmp/log"],
 "symbolic_links":"follow"
 },
 ...
 }
}

Field Description Default

max_parallel The maximum number of concurrent ascp sessions that Watch
Folders can start.

10

connect_timeout How long Watch Folders waits before reporting that ascp as failed. 10s

policy Specify how ascp manages the bandwidth. The policy can be set to
the following values:

• FIXED

• FAIR

• HIGH

• LOW

FAIR

min_rate Attempt to transfer no slower than the specified minimum transfer
rate.

0B

target_rate The target transfer rate. Transfer at rates up to the specified target
rate. This option accepts suffixes T for terabits/s, G for gigabits/
s, M for megabits/s, K for kilobits/s, or B for bits/s. Decimals are
allowed. If this option is not set by the client, the setting in the
server's aspera.conf is used. If a rate cap is set in the local or
server aspera.conf, the rate does not exceed the cap.

10M

tcp_port The port to use for SSH connections. 22

udp_port The port to use for UDP connections. 33001

 | Watch Folders and the Aspera Watch Service | 177

Field Description Default

read_blk_size The read block size. Default determined
by settings in
aspera.conf

write_blk_size The write block size. Default determined
by settings in
aspera.conf

datagram_size The datagram size (MTU) for FASP. Uses the detected
path MTU.

rexmsg_size The maximum size of a retransmission request. Maximum: 1440. Determined by ascp

cipher The encryption cipher that is used to encrypt data in transit. Aspera
supports three sizes of AES cipher keys (128, 192, and 256 bits) and
supports two encryption modes, cipher feedback mode (CFB) and
Galois/counter mode (GCM). The GCM mode encrypts data faster
and increases transfer speeds compared to the CFB mode, but the
server must support and permit it.

Cipher rules

The encryption cipher that you are allowed to use depends on the
server configuration and the version of the client and server:

• When you request a cipher key that is shorter than the cipher
key that is configured on the server, the transfer is automatically
upgraded to the server configuration. For example, when the
server setting is AES-192 and you request AES-128, the server
enforces AES-192.

• When the server requires GCM, you must use GCM (requires
version 3.9.0 or newer) or the transfer fails.

• When you request GCM and the server is older than 3.8.1 or
explicity requires CFB, the transfer fails.

• When the server setting is "any", you can use any encryption
cipher. The only exception is when the server is 3.8.1 or older
and does not support GCM mode; in this case, you cannot
request GCM mode encryption.

• When the server setting is "none", you must use "none". Transfer
requests that specify an encryption cipher are refused by the
server.

Cipher Values

Value Description Support

AES128
AES192
AES256

Use the GCM or CFB
encryption mode,
depending on the server
configuration and version
(see cipher negotiation
matrix).

All client and server
versions.

AES128CFB
AES192CFB
AES256CFB

Use the CFB encryption
mode.

Clients version 3.9.0
and newer, all server
versions.

AES128

 | Watch Folders and the Aspera Watch Service | 178

Field Description Default

Value Description Support

AES128GCM
AES192GCM
AES256GCM

Use the GCM encryption
mode.

Clients and servers
version 3.9.0 and newer.

NONE Do not encrypt data in
transit. Aspera strongly
recommends against
using this setting.

All client and server
versions.

Client-Server Cipher Negotiation

The following table shows which encryption mode is used
depending on the server and client versions and settings:

Server,
v3.9.0+

AES-XXX-
GCM

Server,
v3.9.0+

AES-XXX-
CFB

Server,
v3.9.0+

AES-XXX

Server,
v3.8.1 or
older

AES-XXX

Client,
v3.9.0+

AES-XXX-
GCM

GCM server
refuses
transfer

GCM server
refuses
transfer

Client,
v3.9.0+

AES-XXX-
CFB

server
refuses
transfer

CFB CFB CFB

Client,
v3.9.0+

AES-XXX

GCM CFB CFB CFB

Client,
v3.8.1 or
older

AES-XXX

server
refuses
transfer

CFB CFB CFB

overwrite Specify whether a file is overwritten if it already exists at the
destination. Valid options are:

• NEVER

• ALWAYS

• DIFF

• OLDER

• DIFF+OLDER

DIFF

resume Specify if and how partial transfers are resumed.

• NONE: Always transfer the entire file
• FILE_ATTRIBUTES: Resume if file attributes match.

NONE

 | Watch Folders and the Aspera Watch Service | 179

Field Description Default

• SPARSE_CHECKSUM: Resume if file attributes and sparse
checksum match.

• FULL_CHECKSUM: Resume if file attributes and full checksum
match.

preserve_uid Preserve the file owner user ID. false

preserve_gid Preserve the file owner group ID. false

preserve_time This option is equivalent to configuring
preserve_creation_time,
preserve_modification_time, and
preserve_access_time.

false

preserve_creation_timeSet creation time of the destination be set to that of the source. If the
destination is a non-Windows host, this option is ignored.

false

preserve_modification_timeSet the modification time of the destination file to that of the source. false

preserve_access_time Set the access time of the destination to that of the source. The
destination file has the access time of the source file prior to the
transfer.

false

queue_threshold Watch Folders controls the amount of data pushed to ascp for
transferring. When the capacity is reached, Watch Folders waits
before pushing new data. This capacity is based on the effective
bandwidth reported by ascp.

5s

sample_period Period used to compute the current bandwidth. Used with
queue_threshold to compute the amount of data pushed to
ascp.

2s

content_protect_passwordEnter a password to enable client-side encryption at rest. Files that
are uploaded to the server are appended with a .aspera-env
extension. To download and decrypt .aspera-env files from the
server, the client must provide the password. For more information
on client-side encryption at rest, see Client-Side Encryption-at-Rest
(EAR) on page 128.

N/A

raw_options Specify ascp options and their arguments that are not yet available
in Watch Folders to apply to Watch Folder transfers. To use raw
options, they must be enabled in the client's aspera.conf by
running the following command:

 asconfigurator -x
 "set_central_server_data;raw_options,enable"

disabled

symbolic_links Set the symbolic link handling policy, as allowed by the server.
Value can be FOLLOW, COPY, or SKIP. On Windows, the only
method is SKIP. For more information on symbolic link handling,
see Symbolic Link Handling on page 122.

FOLLOW

The growing Object

Use to stream growing files from the Watch Folder. If a file does not match the growing file filter, it is transferred by
Ascp.

 | Watch Folders and the Aspera Watch Service | 180

Note: Growing files are only supported for local sources (push Watch Folders) and must be authenticated by a
transfer user (password or SSH key file). The transfer user cannot be restricted to aspshell and the source cannot be in
object storage.

{
 ...
 "transport":{
 ...
 "growing_file":{
 "max_parallel":8,
 "policy":"FAIR",
 "min_rate":"",
 "target_rate":"10M",
 "tcp_port":22,
 "udp_port":33001,
 "datagram_size":"",
 "cipher":"AES128",
 "completion_timeout":"5s",
 "memory":"2M",
 "chunk_size":"128K",
 "force_send_after":"2s",
 "filters":[
 {
 "type":"REGEX",
 "rule":"INCLUDE",
 "pattern":".*\\.growing"
 },
 {
 "type":"REGEX",
 "rule":"EXCLUDE",
 "pattern":".*"
 }
]
 }
 }
}

Option Description Default

max_parallel The maximum number of concurrent FASPStream sessions the
Watch Folder can initiate.

8

policy Defines how FASPStream manages the bandwidth. The policy can
be set to the following values:

• FIXED

• FAIR

• HIGH

• LOW

FAIR

min_rate Attempt to transfer no slower than the specified minimum transfer
rate.

0B

target_rate The target transfer rate. Transfer at rates up to the specified target
rate. This option accepts suffixes T for terabits/s, G for gigabits/
s, M for megabits/s, K for kilobits/s, or B for bits/s. Decimals are
allowed. If this option is not set by the client, the setting in the
server's aspera.conf is used. If a rate cap is set in the local or
server aspera.conf, the rate does not exceed the cap.

10M

tcp_port The port to use for SSH connections. 22

 | Watch Folders and the Aspera Watch Service | 181

Option Description Default

udp_port The port to use for UDP connections. 33001

datagram_size The datagram size (MTU) for FASP. The detected path
MTU.

cipher The encryption cipher that is used to encrypt streamed data in transit,
either NONE and AES128.

AES128

completion_timeout How long to wait before the session is considered complete. A
growing file is considered complete when no new data arrives within
the timeout period.

5s

force_send_after Force FASPStream to send data after the given time, even if the
chunk is not full.

2s

memory The maximum amount of memory FASPStream is allowed to use. 2M

chunk_size Packet size for transfers over the network. 128K

filters Select growing files to include in the package as those that match the
specified filters. Use the same syntax as in the "filters" object.

N/A

The watchd Object

Use to manage watchd services for pull Watch Folders when asperawatchd is run on a different node than
asperawatchfolderd.

{
 ...
 "watchd": {
 "scan_period": "30m",
 "identifier": "daemon",
 "connection":{
 "type": "NONE|REDIS|NODE",
 "host": "ip_address",
 "port": port,
 "authentication": {
 "type":"NODE_BASIC",
 "user": "node_username",
 "pass": "node_password"
 }
 }
 }
}

Option Description Default

scan_period The time between file system scans of the watches (from end of one
to start of the next). These scans are independent of the snapshot
minimum interval and snapshot minimum changes to ensure that
changes are identified. To never scan (asperawatchd relies entirely
on file notifications), set to "infinite". On file systems without file
notifications, such as object storage, mounted storage (NFS), Solaris,
AIX, and Isilon, file system scans triggered by the scan period
are used to detect file changes. In this case, set the scan period to
frequently scan for changes. On operating systems that support file
notifications (Linux, Windows, macOS), asperawatchd uses the file
notifications as the primary means for detecting changes, and the
scan period serves as a backup. In this case, the default value of 30

30m

 | Watch Folders and the Aspera Watch Service | 182

Option Description Default

minutes is usually acceptable and no change is necessary. To never
scan, and rely entirely on file notifications, set to infinite.

For pull Watch Folders, file systems scans that are triggered by
scan_period are the sole means for detecting changes in the source
directory.

Lower scan periods detect changes faster but can result in greater
resource consumption, particularly for object storage.

Note: The value for scan period cannot be empty, otherwise the
configuration is rejected.

identifier The daemon associated with the Watch Service that is used to
monitor the file system. Optional. Required only when you want to
use a Watch Service that is run by a user who is not associated with
the Node API user or access key.

The system user that
is associated with
the Node API user or
access key.

connection type The method for connecting to asperawatchd. Value can be NONE,
NODE, or REDIS.

If NODE or REDIS is specified, then host and port must also be
specified. If NODE is specified, then Node API credentials must be
specified in the authorization object.

NONE

host The IP address or the URL of the host of asperanoded or the Redis
database.

localhost

port The port for asperanoded or the Redis database. By default, Node
uses 9092 and Redis uses 31415.

31415

authentication type The method for authentication. Only option is NODE_BASIC. This
value is used only if connection type is NODE.

NODE_BASIC

user The Node API username. This value is used only if connection type
is NODE.

N/A

pass The Node API password. This value is used only if connection type
is NODE.

N/A

Managing Watch Folders with aswatchfolderadmin
The aswatchfolderadmin tool can be used to retrieve a list of Watch Folders, update the configuration of Watch
Folder, and delete a Watch Folder.

Retrieve a List of Running Daemons

Use the aswatchadmin and aswatchfolderadmin utilities to retrieve a list of running daemons. Daemons
have the same name as the user for which they are running. For example, if you used the user to run your services,
you should see the daemon listed when you run the following commands:

 aswatchadmin query-daemons
[aswatchadmin query-daemons] Found a single daemon:

 aswatchfolderadmin query-daemons
[aswatchfolderadmin query-daemons] Found a single daemon:

 | Watch Folders and the Aspera Watch Service | 183

Retrieve a List of Watch Folders

 aswatchfolderadmin query-folders daemon

For example, if two Watch Folders are configured for the daemon , the output is similar to the following:

 aswatchfolderadmin query-folders
[aswatchfolderadmin query-folders] Found 2 watchfolders:
 3354f360-dfa6-4789-930e-074cd9d4551b
 b394d0ee-1cda-4f0d-b785-efdc6496c585

Update a Watch Folder's Configuration
To update a Watch Folder configuration, retrieve the Watch Folder's configuration, make the desired changes, and
then save the configuration as a JSON file. You cannot pass a new configuration file to the update-folder sub-
command, because the new configuration file must match the old file exactly, except for the changes you are making.

1. Retrieve and save the Watch Folder configuration in a new file:

 aswatchfolderadmin query-folders daemon -i watch_folder_id --config
 > filename.json

2. Edit the configuration settings in the file.

Note: When aswatchfolderadmin returns the JSON configuration, it obfuscates the password for the host
with asterisks (******). If you do not want to update the password, leave it obfuscated (as asterisks) in the new
file and the old password is used. To update the password, enter the new string. If no password is specified, then
the password value is empty and transfers cannot be authenticated.

3. Save your changes.
4. Submit the updated configuration file to aswatchfolderadmin:

 aswatchfolderadmin update-folder daemon watchfolder_id -f json_file

For example:

 aswatchfolderadmin update-folder root 3354f360-
dfa6-4789-930e-074cd9d4551b -f watchfolder_conf.json
[aswatchfolderadmin update-folder] Successfully updated
 instance b394d0ee-1cda-4f0d-b785-efdc6496c585

Delete a Watch Folder

 aswatchfolderadmin delete-folder daemon watchfolder_id

For example:

 aswatchfolderadmin update-folder 3354f360-dfa6-4789-930e-074cd9d4551b
[aswatchfolderadmin update-folder] Successfully deleted
 instance b394d0ee-1cda-4f0d-b785-efdc6496c585

Configuring Linux for Many Watch Folders
To run many (>100) push Watch Folders on Linux computers, adjust three system settings and then reload the
sysctl.conf file to activate them.

1. Increase the maximum number of watches allowed by the system.

Retrieve the current value by running the following command:

$ cat /proc/sys/fs/inotify/max_user_watches

 | Watch Folders and the Aspera Watch Service | 184

8192

To permanently increase the number of available watches (to a value that is greater than the number of files to
watch, such as 524288), add the configuration to /etc/sysctl.conf:

$ sudo echo "fs.inotify.max_user_watches=524288" >> /etc/sysctl.conf

2. Increase the maximum number of inotify instances, which correspond to the number of allowed Watch Services
instances.

Retrieve the current value by running the following command:

$ cat /proc/sys/fs/inotify/max_user_instances
128

On many systems, the default value is 128, meaning only 128 watches can be created. To permanently increase
the number available (to a value that is greater than the number of desired Watch Folder instances, such as 1024),
add the configuration to /etc/sysctl.conf:

$ sudo echo "fs.inotify.max_user_instances=1024" >> /etc/sysctl.conf

3. Increase the open file limit.

Retrieve the current value by running the following command:

$ cat /proc/sys/fs/file-max
794120

To permanently increase the open file limit (to a value that is greater than the number of desired watches, such as
2097152), add the configuration to /etc/sysctl.conf:

$ sudo echo "fs.file-max=2097152" >> /etc/sysctl.conf

4. Reload systemd settings to activate the new settings.

To reload systemd settings, either reboot the machine or run the following command:

$ sudo sysctl -p /etc/sysctl.conf

Creating a Push Watch Folder with the API
These instructions describe how to create a push Watch Folder by using the Watch Folder API.

You can also create and manage Watch Folders from the command line (Creating a Push Watch Folder with
aswatchfolderadmin on page 155) or by using IBM Aspera Console (IBM Aspera Console Admin Guide).

When you create a Watch Folder, a Watch service subscription is automatically created to monitor the source
directory. In the rare case that the subscription is somehow deleted or impaired, Watch Folders automatically creates
a new subscription; however, the new subscription does not retain the file change history and all files in the source
directory are re-transferred.

Restrictions on all Watch Folders

• Only local-to-remote (push) and remote-to-local (pull) configurations are supported. Remote-to-remote and local-
to-local are not supported.

• Growing files are only supported for local sources (push Watch Folders) and must be authenticated by a transfer
user (password or SSH key file). The transfer user cannot be restricted to aspshell and the source cannot be in
object storage.

• Source file archiving is not supported if the Watch Folder source is in object storage.
• IBM Aspera Shares endpoints must have version Shares version 1.9.11 with the Watch Folder patch or a later

version.

https://downloads.asperasoft.com/en/documentation/3

 | Watch Folders and the Aspera Watch Service | 185

To create a push Watch Folder with the API:

1. Prepare your computer as described in Getting Started with Watch Folders on page 154.

2. Create a Node API user and associate it with a transfer user account. The user account must have administrative
privileges to interact with asperawatchfolderd.

 asnodeadmin -a -u node_username -p node_password -x admin_user --acl-set
 "admin,impersonation"

For example:

 asnodeadmin -a -u watchfolder_user -p X245lskd3 -x --acl-set
 "admin,impersonation"

Adding, modifying, or deleting a node-user triggers automatic reloading of the user database and the node's
configuration and license files. For more information on the Node API, see your transfer server's administrator
guide.

3. Verify that you correctly added the Node API user.

 asnodeadmin -l
 List of Node API user(s):
 user system/transfer user acls
==================== ======================= ====================
 node_api_user system_user [admin,impersonation]

For example, using the information from the example in the previous step, the output is similar to the following:

 asnodeadmin -l
 user system/transfer user acls
==================== ======================= ====================

4. Create the Watch service and Watch Folder service.

a) Create a JSON configuration file for each service.

For the Watch Service:

{
 "type": "WATCHD",
 "run_as": {
 "user": "username",
 "pass": "password"
 },
 "enabled": true
}

For the Watch Folder service:

{
 "type": "WATCHFOLDERD",
 "run_as": {
 "user": "username",
 "pass": "password"
 },
 "enabled": true
}

The username and password are for a transfer user with permissions to the source path. Save the files, with the
.json extension.

 | Watch Folders and the Aspera Watch Service | 186

b) To create the services, run the following command for each one:

 curl -ki -u node_username:node_password -X POST -d @config_file
 "https://localhost:9092/rund/services"

If service creation succeeds, the ID of the service is returned. Record the IDs for use in the next step.

5. Confirm that the services are running.

For each service, run the following command:

 curl -ki -u node_username:node_password -X GET "https://localhost:9092/
rund/services/service_id"

The state is reported as "RUNNING".

6. Create a JSON configuration file for your Watch Folder.

The Watch Folder JSON file describes the source, target, and authentication to the remote server, and can also
specify transfer session settings, file handling and post-processing, filters, and growing file handling.

A basic push Watch Folder configuration file has the following syntax:

{
 "source": {
 "path": "source_directory"
 },
 "target": {
 "path": "target_directory",
 "location": {
 "type": "REMOTE",
 "host": "hostname",
 "port": port,
 "authentication": {
 "type": "authentication_mode",
 "user": "username",
 "pass": "password"
 "keypath": "key_file"
 }
 }
 },
 "watchd": {
 "scan_period": "scan_period"
 }
}

For a full configuration reference, see Watch Folder JSON Configuration File Reference on page 165.

Field Description Default

source path The local source directory. If the transfer user who is associated with the
Node API user is configured with a docroot, then the path is relative to
that docroot. If the transfer user is configured with a restriction, then the
path is the absolute or UNC path.

N/A

target path The remote target directory. For SSH and Node API user authentication,
the path is relative to the user's docroot, or the absolute path if the transfer
user is configured with a restriction. For Shares authentication, the path
is the share name and, optionally, a path within the share. For access key
authentication, the path is relative to the storage specified in the access
key.

N/A

 | Watch Folders and the Aspera Watch Service | 187

Field Description Default

location type Set "type" to "REMOTE" for the remote server. "type": "REMOTE"
is assumed if "host" is specified.

"REMOTE"

host The host IP address, DNS, hostname, or URL of the remote file system.
Required. The host can be specified with an IPv4 or IPv6 address. The
preferred format for IPv6 addresses is x:x:x:x:x:x:x:x, where each of
the eight x is a hexadecimal number of up to 4 hex digits. Zone IDs (for
example, %eth0) can be appended to the IPv6 address.

N/A

port The port to use for authentication to the remote file system. By default, if
the authentication type is SSH, then the SSH port for the ascp process
(the value for tcp_port in the "transport" section) is used. If the
authentication type is NODE_BASIC, 9092 is used. For Shares, IBM
Aspera Transfer Cluster Manager, or IBM Aspera on Cloud endpoints,
enter 443.

If authentication
type is SSH,
then default is
the value for
tcp_port in
the "transport"
section
(default: 22). If
authentication
type is
NODE_BASIC,
then default is
9092.

authentication
type

How Watch Folders authenticates to the remote server. Valid values are
SSH or NODE_BASIC.

For SSH, authenticate with a transfer user's username and password, or
specify the username and the path to their SSH private key file.

For NODE_BASIC, authenticate with a Node API username and
password, Shares credentials, or an access key ID and secret.

Sample JSON syntax for each authentication type is provided following
this table.

NODE_BASIC

user The username for authentication. Required. Depending on the type of
authentication, it is the transfer user's username, Node API username,
Shares username, or access key ID.

N/A

pass The password for authentication. Depending on the type of authentication,
it is the transfer user's password, the Node API user's password, the Shares
user's password, or the access key secret.

Required for SSH authentication if "keypath" is not specified

N/A

keypath For SSH authentication with an SSH key, the path to the transfer user's
SSH private key file.

Required for SSH authentication if "pass" is not specified

N/A

watchd identifier The daemon associated with the Watch Service that is used to monitor
the file system. Optional. Required only when you want to use a Watch
Service that is run by a user who is not associated with the Node API user
or access key. Use to specify the daemon on the remote host if it is not
xfer.

N/A

scan_period The time between file system scans of the watches (from end of one
to start of the next). These scans are independent of the snapshot
minimum interval and snapshot minimum changes to ensure that changes

30m

 | Watch Folders and the Aspera Watch Service | 188

Field Description Default

are identified. To never scan (asperawatchd relies entirely on file
notifications), set to "infinite". On file systems without file notifications,
such as object storage, mounted storage (NFS), Solaris, AIX, and Isilon,
file system scans triggered by the scan period are used to detect file
changes. In this case, set the scan period to frequently scan for changes.
On operating systems that support file notifications (Linux, Windows,
macOS), asperawatchd uses the file notifications as the primary means for
detecting changes, and the scan period serves as a backup. In this case,
the default value of 30 minutes is usually acceptable and no change is
necessary. To never scan, and rely entirely on file notifications, set to
infinite.

For pull Watch Folders, file systems scans that are triggered by
scan_period are the sole means for detecting changes in the source
directory.

Lower scan periods detect changes faster but can result in greater resource
consumption, particularly for object storage.

Note: The value for scan period cannot be empty, otherwise the
configuration is rejected.

Save the configuration file. The path to the configuration file is used in the next step.

7. Start the Watch Folder.

 curl -k --user node_api_user:node_api_password -H "X-
aspera-WF-version:2017_10_23" -X POST -d @path/to/json_file
 https://host:node_api_port/v3/watchfolders

By default, the API port is 9092.

Note: The header "X-aspera-WF-version:2017_10_23" is required when submitting POST, PUT, and
GET requests to /v3/watchfolders on servers that are version 3.8.0 or newer. This enables Watch Folders to parse
the JSON "source" and "target" objects in the format that was introduced in version 3.8.0.

For example:

 curl -k --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23"
 -X POST -d @/watchfolder_conf.json https://198.51.100.22:9092/v3/
watchfolders
{
"id": "b394d0ee-1cda-4f0d-b785-efdc6496c585"
}

8. Verify that the Watch Folder is running.

 curl -k --user node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id/state

For example:

 curl -sk --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23" -
X GET https://198.51.100.22:9092/v3/watchfolders/b394d0ee-1cda-4f0d-b785-
efdc6496c585/state

If the Watch Folder is running, it is reported with "state":"HEALTHY".

 | Watch Folders and the Aspera Watch Service | 189

You can manage Watch Folders using the API. For more information, see Managing Watch Folders with the API on
page 193.

Creating a Pull Watch Folder with the API
These instructions describe how to create a pull Watch Folder by using the Watch Folder API.

You can also create and manage Watch Folders from the command line (Creating a Pull Watch Folder with
aswatchfolderadmin on page 160) or by using IBM Aspera Console (IBM Aspera Console Admin Guide).

When you create a Watch Folder, a Watch service subscription is automatically created to monitor the source
directory. In the rare case that the subscription is somehow deleted or impaired, Watch Folders automatically creates
a new subscription; however, the new subscription does not retain the file change history and all files in the source
directory are re-transferred.

Restrictions on all Watch Folders

• Only local-to-remote (push) and remote-to-local (pull) configurations are supported. Remote-to-remote and local-
to-local are not supported.

• Growing files are only supported for local sources (push Watch Folders) and must be authenticated by a transfer
user (password or SSH key file). The transfer user cannot be restricted to aspshell and the source cannot be in
object storage.

• Source file archiving is not supported if the Watch Folder source is in object storage.
• IBM Aspera Shares endpoints must have version Shares version 1.9.11 with the Watch Folder patch or a later

version.

Restrictions on Pull Watch Folders

• The remote server must be running HST Server or HST Endpoint version 3.8.0 or newer.
• Pull Watch Folders must be authenticated with an access key ID and secret, a Node API username and password,

or IBM Aspera Shares credentials. SSH authentication is not supported for remote sources.
• Pull Watch Folders that use Node API authentication cannot be authenticated with a Node API user whose

associated transfer user is configured with a restriction (the Watch Folder status is reported as impaired). Edit the
transfer user's configuration to use a docroot, restart asperanoded, and the Watch Folder recovers automatically.

• Pull Watch Folders cannot use IBM Aspera on Cloud (including IBM Aspera on Cloud transfer service nodes) or
IBM Aspera Transfer Cluster Manager nodes as the remote source.

• Pull Watch Folders do not support growing files.

1. Prepare your computer as described in Getting Started with Watch Folders on page 154.

2. Create a Node API user and associate it with a transfer user account. The user account must have administrative
privileges to interact with asperawatchfolderd.

 asnodeadmin -a -u node_username -p node_password -x admin_user --acl-set
 "admin,impersonation"

For example:

 asnodeadmin -a -u watchfolder_user -p X245lskd3 -x --acl-set
 "admin,impersonation"

Adding, modifying, or deleting a node-user triggers automatic reloading of the user database and the node's
configuration and license files. For more information on the Node API, see your transfer server's administrator
guide.

3. Verify that you correctly added the Node API user.

 asnodeadmin -l
 List of Node API user(s):
 user system/transfer user acls
==================== ======================= ====================

https://downloads.asperasoft.com/en/documentation/3

 | Watch Folders and the Aspera Watch Service | 190

 node_api_user system_user [admin,impersonation]

For example, using the information from the example in the previous step, the output is similar to the following:

 asnodeadmin -l
 user system/transfer user acls
==================== ======================= ====================

4. Create a Watch Service on the remote server.

This approach requires that you have node credentials for the remote server.

a) Create a JSON configuration file for the remote Watch Service.

{
 "type": "WATCHD",
 "run_as": {
 "user": "username",
 "pass": "password"
 },
 "enabled": true
}

The username and password are for a transfer user with permissions to the source path. Save the file as
wfd_create.json.

b) To create the service, run the following command:

 curl -ki -u node_username:node_password -X POST -d @wfd_create.json
 "https://server_ip_address:9092/rund/services"

The output includes the service ID. Record the ID for the next substep.
c) Confirm that the service is running.

 curl -ki -u node_username:node_password -X GET
 "https://server_ip_address:9092/rund/services/service_id"

5. Create the Watch Folder service on the local computer.

a) Create a JSON configuration file for the service with the following text:

{
 "type": "WATCHFOLDERD",
 "run_as": {
 "user": "username",
 "pass": "password"
 },
 "enabled": true
}

The username and password are for a transfer user with permissions to the source path. Save the files, with the
.json extension.

b) Create the service.

 curl -ki -u node_username:node_password -X POST -d @config_file
 "https://localhost:9092/rund/services"

If service creation succeeds, the ID of the service is returned. Record the ID for use in the next step.
c) Confirm that the service is running.

 curl -ki -u node_username:node_password -X GET "https://localhost:9092/
rund/services/service_id"

 | Watch Folders and the Aspera Watch Service | 191

6. Create a JSON configuration file for your Watch Folder.

The Watch Folder JSON file describes the source, target, and authentication to the remote server, and can also
specify transfer session settings, file handling and post-processing, filters, and growing file handling.

A basic pull Watch Folder configuration has the following syntax:

{
 "source": {
 "path": "source_directory",
 "location": {
 "type": "REMOTE",
 "host": "ip_address",
 "port": port,
 "authentication": {
 "type": "authentication_mode",
 "user": "username",
 "pass": "password"
 }
 }
 },
 "target": {
 "path": "target_directory"
 },
 "watchd": {
 "scan_period": "scan_period",
 "identifier": "daemon"
 }
}

For a full configuration reference, see Watch Folder JSON Configuration File Reference on page 165.

Field Description Default

source path The source directory on the remote server. For SSH and Node
API user authentication, the path is relative to the associated
transfer user's docroot, or the absolute path if the transfer user is
configured with a restriction. For Shares authentication, the path is
the share name and, optionally, a path within the share. For access
key authentication, the path is relative to the storage specified in
the access key.

N/A

location type Set "type" to "REMOTE" for the remote server. "type":
"REMOTE" is assumed if "host" is specified.

"REMOTE"

host The host IP address, DNS, hostname, or URL of the remote
file system. Required. The host can be specified with an IPv4
or IPv6 address. The preferred format for IPv6 addresses is
x:x:x:x:x:x:x:x, where each of the eight x is a hexadecimal number
of up to 4 hex digits. Zone IDs (for example, %eth0) can be
appended to the IPv6 address.

N/A

port The port to use for authentication to the remote file system. By
default, if the authentication type is SSH, then the SSH port for
the ascp process (the value for tcp_port in the "transport"
section) is used. If the authentication type is NODE_BASIC, 9092
is used. For Shares, IBM Aspera Transfer Cluster Manager, or
IBM Aspera on Cloud endpoints, enter 443.

If authentication
type is SSH,
then default is
the value for
tcp_port in the
"transport" section
(default: 22). If
authentication type

 | Watch Folders and the Aspera Watch Service | 192

Field Description Default

is NODE_BASIC,
then default is 9092.

authentication type How Watch Folders authenticates to the remote server. Pull Watch
Folders must use NODE_BASIC and authenticate with a Node API
username and password, Shares credentials, or an access key ID
and secret.

NODE_BASIC

user The username for authentication. Required. Depending on the
type of authentication, it is the transfer user's username, Node API
username, Shares username, or access key ID.

N/A

pass The password for authentication, depending on the type of
authentication.

N/A

target path The target directory on the local computer, relative to the transfer
user's docroot.

N/A

watchd identifier The daemon associated with the Watch Service that is used to
monitor the file system. Optional. Required only when you want
to use a Watch Service that is run by a user who is not associated
with the Node API user or access key.

The system user that
is associated with
the Node API user
or access key.

scan_period The time between file system scans of the watches (from end
of one to start of the next). These scans are independent of the
snapshot minimum interval and snapshot minimum changes to
ensure that changes are identified. To never scan (asperawatchd
relies entirely on file notifications), set to "infinite". On file
systems without file notifications, such as object storage, mounted
storage (NFS), Solaris, AIX, and Isilon, file system scans triggered
by the scan period are used to detect file changes. In this case,
set the scan period to frequently scan for changes. On operating
systems that support file notifications (Linux, Windows, macOS),
asperawatchd uses the file notifications as the primary means for
detecting changes, and the scan period serves as a backup. In this
case, the default value of 30 minutes is usually acceptable and
no change is necessary. To never scan, and rely entirely on file
notifications, set to infinite.

For pull Watch Folders, file systems scans that are triggered by
scan_period are the sole means for detecting changes in the source
directory.

Lower scan periods detect changes faster but can result in greater
resource consumption, particularly for object storage.

Note: The value for scan period cannot be empty, otherwise the
configuration is rejected.

30m

Save the configuration file. The path to the configuration file is used in the next step.

7. Start the Watch Folder.

 curl -k --user node_api_user:node_api_password -H "X-
aspera-WF-version:2017_10_23" -X POST -d @path/to/json_file
 https://host:node_api_port/v3/watchfolders

By default, the API port is 9092.

 | Watch Folders and the Aspera Watch Service | 193

Note: The header "X-aspera-WF-version:2017_10_23" is required when submitting POST, PUT, and
GET requests to /v3/watchfolders on servers that are version 3.8.0 or newer. This enables Watch Folders to parse
the JSON "source" and "target" objects in the format that was introduced in version 3.8.0.

For example:

 curl -k --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23"
 -X POST -d @/watchfolder_conf.json https://198.51.100.22:9092/v3/
watchfolders
{
"id": "b394d0ee-1cda-4f0d-b785-efdc6496c585"
}

8. Verify that the Watch Folder is running.

 curl -k --user node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id/state

For example:

 curl -sk --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23" -
X GET https://198.51.100.22:9092/v3/watchfolders/b394d0ee-1cda-4f0d-b785-
efdc6496c585/state

If the Watch Folder is running, it is reported with "state":"HEALTHY".

You can manage Watch Folders using the API. For more information, see Managing Watch Folders with the API on
page 193.

Managing Watch Folders with the API
You can use the Watch Folder API to create, remove, and manage Watch Folders. The instructions below uses curl
commands to interact with the API.

Retrieve a list of Watch Folders

To retrieve a list of Watch Folders, run the following curl command:

 curl -k --user node_api_user:node_api_password -H "X-aspera-WF-
version:2017_10_23" -X GET https://host:node_api_port/v3/watchfolders

For example:

 curl -k --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23" -X
 GET https://198.51.100.22:9092/v3/watchfolders
{
"ids" : [
"b394d0ee-1cda-4f0d-b785-efdc6496c585"
]
}

If there are no running Watch Folders, the server returns the following output.

{
"ids" : [

]
}

 | Watch Folders and the Aspera Watch Service | 194

Check state, statistics, and status of a watch, transfer, or Watch Folder

curl -ks -u node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id/state

In the following example, the output shows Watch Folder errored due to a configuration option that was not set.
Errors with ascp transfers are displayed similarly in the transport section.

 curl -ks --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23" -
X GET https://198.51.100.22:9092/v3/watchfolders/b394d0ee-1cda-4f0d-b785-
efdc6496c585/state
{
 "state": "HEALTHY",
 "statistics": {
 "files_transferred": 0,
 "files_succeeded": 0,
 "files_failed": 0,
 "files_skipped": 0,
 "files_ignored": 0,
 "files_disappeared_before_cool_off": 0,
 "files_unsatisfied_dependency": 0,
 "files_never_appeared": 0,
 "bytes_completed": 0,
 "bytes_written": 0
 },
 "components": {
 "watch": {
 "state": "HEALTHY",
 "state_changed_at": "2016-12-19T20:18:47Z"
 },
 "transport": {
 "state": "UNKNOWN",
 "state_changed_at": "2016-12-19T20:17:48Z"
 },
 "watchfolderd": {
 "state": "HEALTHY",
 "state_changed_at": "2016-12-19T20:18:47Z",
 "last_error": "UAC don't allow raw_options",
 "last_error_at": "2016-12-19T20:18:10Z"
 }
 }
}

Query and save a configuration for a specific Watch Folder

 curl -ks -u node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id > config_file.json

For example:

 curl -ks --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23" -
X GET https://198.51.100.22:9092/v3/watchfolders/b394d0ee-1cda-4f0d-b785-
efdc6496c585 > wf_config1.json

Copy the output in a .json file.

 | Watch Folders and the Aspera Watch Service | 195

Retry a failed drop

Watch Folders groups files into "drops" for transfer. If a file in a drop fails to transfer, it is automatically retried based
on the Watch Folder configuration (see options in the "error_handling" section, Watch Folder JSON Configuration
File Reference on page 165). A drop is marked as failed if the file does not transfer within the specified retry
period.

You can retry to transfer the failed drop through the Watch Folder API by retrieving the Watch Folder ID and drop
ID, then updating the state of the drop:

1. Get the ID of the Watch Folder that you want to update by getting a list of Watch Folders:

 curl -k --user node_api_user:node_api_password -H "X-aspera-WF-
version:2017_10_23" -X GET https://host:node_api_port/v3/watchfolders

2. Get the ID of the failed drop:

 curl -k --user node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id/drops?state="FAILED"

If you need to disambiguate failed drops by seeing the files that are contained in them, you can run the following
command:

 curl -k --user node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id/drops/drop_id/files

3. Retry the drop by changing the state to RETRY:

 curl -k --user node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X PUT https://host:node_api_port/v3/
watchfolders/watchfolder_id/drops/drop_id -d'{"state":"RETRY"}'

The drop transfer now retries for the specified number of attempts within the retry period.

Updating a Watch Folder

To update a Watch Folder configuration, retrieve the Watch Folder's configuration, make the desired changes, and
then save the configuration as a JSON file.

You cannot use a new configuration file, because the new configuration file must match the old file exactly, except
for the changes you are making, and because the configuration version number increments with each update.

1. Get the ID of the Watch Folder that you want to update by getting a list of Watch Folders:

 curl -k --user node_api_user:node_api_password -H "X-aspera-WF-
version:2017_10_23" -X GET https://host:node_api_port/v3/watchfolders

2. Save the Watch Folder configuration file for editing:

 curl -ks -u node_api_user:node_api_password -H "X-aspera-
WF-version:2017_10_23" -X GET https://host:node_api_port/v3/
watchfolders/watchfolder_id > config_file.json

3. Open the configuration file in an editor, make your changes, and save the file.

Note: When aswatchfolderadmin returns the JSON configuration, it obfuscates the password for the host
with asterisks (******). If you do not want to update the password, leave it obfuscated (as asterisks) in the new
file and the old password is used. To update the password, enter the new string. If no password is specified, then
the password value is empty and transfers cannot be authenticated.

 | Watch Folders and the Aspera Watch Service | 196

4. Update the Watch Folder configuration by sending the updated configuration file:

 curl -kv --user node_api_user:node_api_password -H "X-aspera-WF-
version:2017_10_23" -X PUT -d @path_to_json https://host:node_api_port/v3/
watchfolders/watchfolder_id

Note: The header "X-aspera-WF-version:2017_10_23" is required when submitting POST, PUT, and
GET requests to /v3/watchfolders on servers that are version 3.8.0 or newer. This enables Watch Folders to parse
the JSON "source" and "target" objects in the format that was introduced in version 3.8.0.

For example:

 curl -kv --user watchfolder_admin: -H "X-aspera-WF-version:2017_10_23"
 -X PUT -d @tmpwf_config_update.json https://198.51.100.22:9092/v3/
watchfolders/b394d0ee-1cda-4f0d-b785-efdc6496c585

If the update is successful, then the following is returned:

HTTP/1.1 100 Continue
HTTP/1.1 200 OK

Moving a Watch Folder from one user or daemon to another

To move a Watch Folder configuration, you must first retrieve the Watch Folder's configuration, make the desired
changes, and then create a new Watch Folder with the modified configuration file. Follow the steps provided
previously to query and save a configuration for the Watch Folder.

Open the configuration file in an editor and make the following changes:

1. Remove the "id" field.
2. Remove the "version" field.
3. Re-enter the password in the "pass" field.
4. Set proper watchfolderd IDs in the ("wfd_id") fields

Save the configuration file and then run the following command, specifying the modified configuration file as the
JSON file:

 curl -k --user node_api_user:node_api_password -H "X-
aspera-WF-version:2017_10_23" -X POST -d @path/to/json_file
 https://host:node_api_port/v3/watchfolders

For example, to change the user to admin2, run the following:

 curl -k --user admin2: -H "X-aspera-WF-version:2017_10_23" -X POST -d @~/
watchfolder_conf.json https://198.51.100.22:9092/v3/watchfolders
{
"id": "b394d0ee-1cda-4f0d-b785-efdc6496c585"
}

To verify that the configuration was updated, retrieve the configuration file again and look for your changes.

Deleting a Watch Folder

To remove a Watch Folder, run the following command:

 curl -sk --user node_api_user:node_api_password -X DELETE
 https://host:node_api_port/v3/watchfolders/watchfolder_id

 | Watch Folders and the Aspera Watch Service | 197

For example:

 curl -k --user watchfolder_admin: -X DELETE https://198.51.100.22:9092/v3/
watchfolders/b394d0ee-1cda-4f0d-b785-efdc6496c585

To verify that the Watch Folder was removed, retrieve the list of Watch Folders with the command as shown
previously. If the Watch Folder ID is no longer listed, the Watch Folder was successfully deleted.

Configuring Custom Watch Folder Permissions Policies
By default, users are not allowed to perform any Watch Folders-related actions, unless they are configured with
admin ACLs. If you do not want every user to have admin permissions, configure users with customized permissions
policies, including whether they are allowed or denied permission to create Watch Folders, create Watch and Watch
Folder services, and edit policies. The policy is a JSON object that is assigned to specific users. Users can be assigned
to multiple policies to incrementally allow or deny permissions.

Create a Permission Policy

Run the following command:

 curl -k --user node_api_user:node_api_password -X POST -d @path/to/
json_file https://localhost:9092/access_control/policies

Where the JSON file contains the permissions policy, as described in the next section. The Node API user must have
permission to create policies to run this command.

Policy Syntax

A permissions policy is a JSON object with the following syntax:

{
 "id": "policy_name",
 "statements": [
 {
 "effect": "effect_value",
 "actions": [
 "permission_1",
 "permission_2",
 ...
 "permission_n"
],
 "resources": [
 "resource_id"
]
 }
]
}

The placeholders take the following values:

• policy_name: A descriptive name for the policy, such as "only-wfd-aspera". If no value is specified, a UUID is
generated and returned in the output when the policy is created.

• effect_value: Set to ALLOW or DENY.
• permission: An action that the user is allowed or denied, depending on effect_value. Values can use * to match

any sequence of characters. For example, to allow all Watch Folder-related actions, enter "WF_*". See the
following section for a complete list of permissions.

 | Watch Folders and the Aspera Watch Service | 198

• resource_id: For Watch Folder-related permissions, specify the resources to which the actions apply by their
Aspera Resource Name (ARN), using the following general syntax:

arn:service:resource_type:resource

Where service identifies the product (watchfolder or watch), resource_type is the type of resource (wfd for
a Watch Folder daemon , wf for a Watch Folder), and resource is the resource ID, or a series of IDs to specify the
daemon and Watch Folder ID of a specific Watch Folder. See the following section for examples.

Actions

The following actions are permissions to create, delete, and view policies, and assign users to policies. These actions
do not require that you specify a value for "resources". To allow all permissions, use "PERM_*".

PERM_CREATE_POLICY

PERM_DELETE_POLICY

PERM_LIST_POLICIES

PERM_ATTACH_USER_POLICY

PERM_DETACH_USER_POLICY

PERM_LIST_USER_POLICIES

The following actions create, delete, and view Watch and Watch Folder services. These actions do not require that
you specify a value for "resources". Users without these permissions must create Watch Folders that use existing
Watch and Watch Folder services.

PERM_LIST_RESOURCES

PERM_CREATE_RESOURCE

PERM_DELETE_RESOURCE

The following actions create and delete Watch Folders. These actions require that you specify the wfd
resource, as arn:watchfolder:wfd:daemon. To allow actions on Watch Folders as any daemon, use
arn:watchfolder:wfd:*.

WF_CREATE_WATCHFOLDER

WF_DELETE_WATCHFOLDER

Note: Node API users must have PERM_LIST_RESOURCES allowed in order to allow
WF_CREATE_WATCHFOLDER or WF_DELETE_WATCHFOLDER.

The following actions retrieve Watch Folder configuration and state, update the Watch Folder,
and retry a Watch Folder drop. These actions require that you specify the wf resource, as
arn:watchfolder:wf:daemon:watchfolder_id. To allow actions on any Watch Folders run by any
daemon, use arn:watchfolder:wf:*:*.

WF_GET_WATCHFOLDER

WF_GET_WATCHFOLDER_STATE

WF_UPDATE_WATCHFOLDER

WF_RETRY_DROP

To allow all Watch Folder actions on all Watch Folders, enter "WF_*" as the action and
"arn:watchfolder:wfd:*" as the resource.

Sample Policies

Allow the user to view policies and user permissions:

{
 "id": "read-permissions",
 "statements": [
 {

 | Watch Folders and the Aspera Watch Service | 199

 "effect": "ALLOW",
 "actions": [
 "PERM_LIST_*"
],
 "resources": []
 }
]
}

Allow the user to do all Watch Folders actions:

{
 "id": "all-watch-folders",
 "statements": [
 {
 "effect": "ALLOW",
 "actions": [
 "WF_*",
 "PERM_LIST_RESOURCES"
],
 "resources": [
 "arn:watchfolder:wfd:*"
]
 }
]
}

Assigning Node API Users to Policies
Assign a user to one or more policies by running the following command:

 curl -k --user node_api_user:node_api_password -X PUT -d {"policies":
["policy_id1", "policy_id2"]} https://localhost:9092/access_control/
users/username/policies

You can also assign a policy to multiple users at once:

 curl -k --user node_api_user:node_api_password -X PUT" -d
 {"users":["user1", "user2"]} https://localhost:9092/access_control/
policies/policy_id/users

To retrieve the IDs of available permissions policies, run the following command:

 curl -k --user node_api_user:node_api_password -X GET https://
localhost:9092/access_control/policies

To view the permissions policies that are assigned to a user, run the following command:

 curl -k --user node_api_user:node_api_password -X GET https://
localhost:9092/access_control/users/username/policies

To view the users that are assigned to a permissions policy, run the following command:

 curl -k --user node_api_user:node_api_password -X GET https://
localhost:9092/access_control/policies/policy_id/users

 | Watch Folders and the Aspera Watch Service | 200

Editing Policies

To edit a policy, create a JSON configuration file as if you were creating a new policy, but do not include the "id".
Run the following command to update the policy:

 curl -k --user node_api_user:node_api_password -X PUT -d @path/to/json_file
 https://localhost:9092/access_control/policies/policy_id

To retrieve the configuration of an existing policy, run the following command:

 curl -k --user node_api_user:node_api_password -X GET https://
localhost:9092/access_control/policies/policy_id

Note: The policy name ("id") cannot be edited. To change the name, create a new policy.

Updating the Docroot or Restriction of a Running Watch Folder Service
If aswatchfolderadmin returns the error code err=28672 when you try to create a Watch Folder, confirm
that the user's docroot or restriction allows access to the source directory specified in the JSON configuration
file. You might have specified a destination that is not permitted by the docroot or restriction of the user running
asperawatchfolderd, or you may have no docroot configured at all.

These instructions describe how to retrieve the docroot or restriction configuration for the user and update the docroot
or restriction, if necessary. The configuration change automatically triggers asperawatchd that is associated with the
user to restart.

1. Run the following command to retrieve the docroot or restriction setting for the user:

 asuserdata -u username | grep "absolute"

 asuserdata -u username | grep "restriction"

• If no docroot is configured for the user, no output is returned. Proceed to the next step to set a docroot or
restriction.

• If a docroot is configured, the command returns output similar to the following:

canonical_absolute: ""
absolute: ""

• If a restriction is configured, the command returns output similar to the following:

file_restriction: "file:////*"

If the user's docroot or restriction does not permit access to the source folder, proceed to the next step to update
the docroot.

2. Configure a docroot or restriction for the user.

Docroots and path restrictions limit the area of a file system or object storage to which the user has access. Users
can create Watch Folders and Watch services on files or objects only within their docroot or restriction.

Note: Users can have a docroot or restriction, but not both or Watch Folder creation fails.

To set up a docroot from the command line, run the following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

Restrictions must be set from the command line:

 asconfigurator -x
 "set_user_data;user_name,username;file_restriction,|path"

 | Watch Folders and the Aspera Watch Service | 201

The restriction path format depends on the type of storage. In the following examples, the restriction allows access
to the entire storage; specify a bucket or path to limit access.

Storage Type Format Example

local storage For Unix-like OS:

• specific folder: file:////folder/*
• drive root: file:////*

For Windows OS:

• specific folder: file:///c%3A/folder/*
• drive root: file:///c*

Amazon S3 and IBM Cloud Object Storage - S3 s3://*

Azure azu://*

Azure Files azure-files://*

Azure Data Lake Storage adl://*

Alibaba Cloud oss://*

Google Cloud gs://*

HDFS hdfs://*

With a docroot or restriction set up, the user is now an Aspera transfer user. Restart asperanoded to activate your
change:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

The Aspera Watch Service
Automatically detect file system changes with the Aspera Watch Service.

Starting Aspera Watch Services and Creating Watches
The Aspera Watch Service (asperawatchd) is a file system change detection and snapshot service that is
optimized for speed, scale, and distributed sources. On file systems that have file system notifications, changes in
source file systems (new files and directories, deleted items, and renames) are detected immediately, eliminating
the need to scan the file system. On file systems without file notifications, such as object storage, Solaris, AIX, and
Isilon, file system scans are automatically triggered.

The Aspera Watch Service can be used on any local or shared (CIFS, NFS) host. However, when watching mounted
shared storage and the change originates from a remote server, the Watch Service does not receive file notifications.
In such cases, set <scan_period> in aspera.conf to frequent scans, such as 1 minute. See the following steps
for instructions.

When used in conjunction with ascp commands, the Aspera Watch Service enables fast detection and transfer of
new and deleted items. For more information on using watches with ascp, see Transferring and Deleting Files with
the Aspera Watch Service on page 206.

To start the Aspera Watch Service and subscribe to (create) a watch:

1. Configure a docroot or restriction for the user.

 | Watch Folders and the Aspera Watch Service | 202

Docroots and path restrictions limit the area of a file system or object storage to which the user has access. Users
can create Watch Folders and Watch services on files or objects only within their docroot or restriction.

Note: Users can have a docroot or restriction, but not both or Watch Folder creation fails.

To set up a docroot from the command line, run the following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

Restrictions must be set from the command line:

 asconfigurator -x
 "set_user_data;user_name,username;file_restriction,|path"

The restriction path format depends on the type of storage. In the following examples, the restriction allows access
to the entire storage; specify a bucket or path to limit access.

Storage Type Format Example

local storage For Unix-like OS:

• specific folder: file:////folder/*
• drive root: file:////*

For Windows OS:

• specific folder: file:///c%3A/folder/*
• drive root: file:///c*

Amazon S3 and IBM Cloud Object Storage - S3 s3://*

Azure azu://*

Azure Files azure-files://*

Azure Data Lake Storage adl://*

Alibaba Cloud oss://*

Google Cloud gs://*

HDFS hdfs://*

With a docroot or restriction set up, the user is now an Aspera transfer user. Restart asperanoded to activate your
change:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

2. Ensure the user has permissions to write to the default log directory if no directory is specified.

For more information about configuring log directories, seeWatch Service Configuration on page 203.

3. Configure Watch Service settings.

Though the default values are already optimized for most users, you can also configure the snapshot database,
snapshot frequency, and logging. For instructions, see Watch Service Configuration on page 203.

4. Start a Watch Service under the user.

The following command adds the Watch Service run under the user to the Aspera Run Service database:

 asperawatchd --user username [options]

5. Verify that the Watch Service daemon is running under the user.

 | Watch Folders and the Aspera Watch Service | 203

Use the aswatchadmin utility to retrieve a list of running daemons. Daemons are named for the user who runs
the service. For example, if you started a Watch Service under , you should see the daemon listed when you run
the following command:

 aswatchadmin query-daemons
[aswatchadmin query-daemons] Found a single daemon:

6. Create a watch.

A watch is a path that is watched by the Aspera Watch Service. To create a watch, users subscribe to a Watch
Service and specify the path to watch. run the following command, where daemon is the username used to start
the asperawatchd service and filepath is the directory to watch:

 aswatchadmin subscribe daemon filepath

When you create a new subscription, you can also set watch-specific logging, database, scan period, and
expiration period, and override aspera.conf settings.

Note: The default scan period is 30 minutes. If you are watching a file system that does not support file system
notifications (such as object storage, mounted storage (NFS), Solaris, AIX, and Isilon), Aspera recommends
setting a more frequent scan to detect file system changes quicker.

For more information on using these options, see Managing Watch Subscriptions on page 205 or run:

 aswatchadmin subscribe -h

Note: The default expiration for watches is 24 hours. If a watch subscription expires before the user resubscribes
to it, a new subscription must be created.

Watch Service Configuration
The Aspera Watch Service configuration in the <server> section of aspera.conf includes the snapshot
database, snapshot frequency, and logging:

<server>
 <rund>...</rund>
 <watch>
 <log_level>log</log_level>
 <log_directory>AS_NULL</log_directory>
 <db_spec>redis:host:31415:domain</db_spec>
 <watchd>
 <max_directories>1000000</max_directories>
 <max_snapshots>10000</max_snapshots>
 <snapshot_min_interval>3s</snapshot_min_interval>
 <snapshot_min_changes>100</snapshot_min_changes>
 <scan_threads>16</scan_threads>
 </watchd>
 <watchfolderd>...</watchfolderd>
 </watch>
</server>

To view current settings without opening aspera.conf, run the following command and look for settings that start
with watch and watchd:

 asuserdata -a

Note: Logging and database settings apply to both the Watch Service and Watch Folders services.

 | Watch Folders and the Aspera Watch Service | 204

Configuring Watch Service Settings

Configure the Watch Service by using asconfigurator commands with this general syntax:

 asconfigurator -x "set_server_data;option,value"

Options and values are described in the following table.

Configuration Options and Values

asconfigurator option
aspera.conf setting

Description Default

watch_log_dir
<log_dir>

Log to the specified directory. This
setting applies to both the Watch
Service and Watch Folders services.

The Aspera logging file (Log Files
on page 330).

watch_log_level
<log_level>

The level of detail for Aspera Watch
Service logging. This setting applies
to both the Watch Service and Watch
Folders services. Valid values are
log, dbg1, and dbg2.

log

watch_db_spec
<db_spec>

Use the specified Redis database,
which is defined with the syntax
redis:ip_address:port[:domain].
This setting applies to both the
Watch Service and Watch Folders
services.

redis:127.0.0.1:31415

watchd_max_directories
<max_directories>

The maximum number of directories
that can be watched (combined
across all watches).

This setting is used only on Linux
machines to overwrite the system
value /proc/sys/fs/inotify/
max_user_watches. To
overwrite the system value with the
aspera.conf value, run the setup
procedure in the admin tool:

aswatchadmin setup

1000000

watchd_max_snapshots
<max_snapshots>

The number of snapshots that are
stored in the database before the
oldest are overwritten.

10000

watchd_snapshot_min_interval
<snapshot_min_interval>

The maximum amount of time
between snapshots. If this period
passes without the minimum number
of changes to trigger a snapshot, a
new snapshot is taken.

3s

watchd_snapshot_min_changes
<snapshot_min_changes>

The minimum number of changes
that trigger a snapshot. If this number
is reached before the snapshot

100

 | Watch Folders and the Aspera Watch Service | 205

asconfigurator option
aspera.conf setting

Description Default

minimum interval passes, a new
snapshot is taken.

watchd_scan_threads
<scan_threads>

The number of threads to use to scan
the watched folder. More threads
increase the speed of the scan,
particularly for folders with large
numbers of files, but require more of
your computer's resources.

16

Setting Custom Watch Scan Periods
When a new subscription to a watch is created, it uses the default scan period of 30 minutes unless otherwise
specified. You can also modify the scan period of an existing subscription.

Set the Default Scan Period When Upgrading from 3.7.4 or earlier to 3.8.0 or later

To update the default scan period that is applied during the migration, run the following command:

 asconfigurator -x "set_server_data;watchd_scan_period,value"

Modify the Scan Period of an Existing Subscription

In the subscription model, you cannot update the scan period of an existing subscription. Instead, create a new
subscription and let the old one expire. To retrieve the configuration of the existing subscription, run the following
command:

 aswatchadmin query-subscription daemon

To create a new subscription and set the scan period, run the following command:

 aswatchadmin subscribe daemon path --scan-period=seconds

Managing Watch Subscriptions
The Aspera Watch Service can watch the entire area of the file system to which the user has access. Individual
watches are created by subscribing to the service and specifying a portion of the file system to watch. Each
subscription can specify a scan period, database, and subscription expiration. When subscriptions overlap in the file
system, the shortest scan period is used to scan the shared area.

Watch subscriptions are managed by using the aswatchadmin command line utility.

Create a new subscription to a watch

 aswatchadmin subscribe daemon filepath [options]

Options include:

--db-spec=type:host:port

Use the specified Redis database, which is defined with the syntax
redis:ip_address:port[:domain].

-L, --logdir=log_dir

Specify the location for watch logging, particularly if the user does not have access to the default
log location (/var/log/aspera.log) or the location specified in aspera.conf.

 | Watch Folders and the Aspera Watch Service | 206

--scan-period=seconds

The time between file system scans of the watches (from end of one to start of the next). These
scans are independent of the snapshot minimum interval and snapshot minimum changes to ensure
that changes are identified. To never scan (asperawatchd relies entirely on file notifications), set to
"infinite".

On file systems without file notifications, such as object storage, mounted storage (NFS), Solaris,
AIX, and Isilon, file system scans triggered by the scan period are used to detect file changes. In
this case, set the scan period to frequently scan for changes. On operating systems that support file
notifications (Linux, Windows, macOS), asperawatchd uses the file notifications as the primary
means for detecting changes, and the scan period serves as a backup. In this case, the default value
of 30 minutes is usually acceptable and no change is necessary. To never scan, and rely entirely on
file notifications, set to infinite.

-x, --expire_in=seconds

How long the watch subscription lasts before being removed from the database, with a default of
86400 seconds (24 hours). Users can resubscribe to a watch before the expiration period. Once a
watch subscription expires, a new subscription must be created.

Command line options override settings in aspera.conf.

List subscriptions for a specific daemon

 aswatchadmin query-subscriptions daemon

The output includes the subscription IDs, which are used to unsubscribe and resubscribe to the specific watch.

Unsubscribe from a watch

 aswatchadmin unsubscribe daemon subscription_id

Resubscribe to a watch

 aswatchadmin resubscribe daemon subscription_id

Transferring and Deleting Files with the Aspera Watch Service
When used in conjunction with ascp commands, the Aspera Watch Service (asperawatchd) allows for fast
detection and sending of new and deleted items. By comparing snapshots of the file directory it is watching,
asperawatchd generates file lists for ascp transfers.

Prerequisites

To generate snapshots and file lists, configure and start asperawatchd. For more information, see Configuring the
Aspera Watch Service.

Creating a Subscription, Snapshots, and Snapshot Differential

1. Create a subscription and decide how to manage its expiration.

 aswatchadmin subscribe daemon filepath [options]

By default, subscriptions expire in 24 hours. If your snapshot comparisons will be spaced more than 24
hours apart, either set the expiration time to a duration longer than the time between snapshots (add --
expire_in=seconds to the command) or send a resubscribe command periodically to maintain the
subscription.

For more information on creating subscriptions and resubscribing to them, see Managing Watch Subscriptions on
page 205.

 | Watch Folders and the Aspera Watch Service | 207

In the following example, user aspera subscribes to /projectA/source and the subscription expires in 48 hours:

 aswatchadmin subscribe aspera /projectA/source --expire_in=172800
[aswatchadmin subscribe] Successfully created
 subscription {"identifier":"bec581b3-3c34-47d7-
a719-93f26f8272d1","path":"file:////projectA/source","scan_period":
{"sec":9223372036854775807,"usec":999999},"expiration":"2018-03-15T07:39:21Z"}

Record the subscription ID (the value of "identifier" in the output) for use in creating the snapshot. You can also
retrieve the subscription ID later.

2. Create a snapshot.

 aswatchadmin create-snapshot daemon subscription_id

If you do not have the subscription ID, run the following command:

 aswatchadmin query-subscriptions daemon

In the following example, user aspera creates a snapshot of the directory that is watched by subscription
bec581b3-3c34-47d7-a719-93f26f8272d1:

 aswatchadmin create-snapshot aspera bec581b3-3c34-47d7-a719-93f26f8272d1
[aswatchadmin create-snapshot] Successfully created snapshot 1.

3. After the desired interval, create another snapshot to compare with the previous snapshot.

The snapshot ID is automatically incremented with each create-snapshot command. For example, running
the same command as the previous step outputs a new snapshot:

 aswatchadmin create-snapshot aspera bec581b3-3c34-47d7-a719-93f26f8272d1
[aswatchadmin create-snapshot] Successfully created snapshot 2.

4. Generate the snapshot differential between the most recent snapshot and the snapshot before it.

To create a snapshot differential that outputs a list that can be used by ascp, run the following command:

 aswatchadmin snapshot-differential daemon subscription_id snapshot_id --
format=PATH

Where the snapshot ID is the latest snapshot. For example:

 aswatchadmin snapshot-differential aspera bec581b3-3c34-47d7-
a719-93f26f8272d1 2
/new_file.png
/new_file.pdf

Save the file list for use in the transfer session.

5. Send the new and modified files with ascp or ascp4.

Use the --source-prefix option to append the watch directory path to the filepaths in the list:

 ascp --file-list=filelist_pathname --source-prefix=prefix --mode=send --
user=username --host=host target_directory

For example:

 ascp --file-list=/Users/aspera/filelist.txt --source-prefix=/projectA/
source --mode=send --user=aspera --host=10.0.0.1 /projectA/destination
new_file.png 100% 10MB 9.7Mb/s 00:07
new_file.pdf 100% 100MB 9.7Mb/s 00:35
Completed: 112640K bytes transferred in 42 seconds

 | Aspera Sync | 208

 (268190 bits/sec), in 2 files.

Removing Files from the Target Directory

The asdelete utility compares the source directory with the target directory and deletes extraneous files from the
target directory. Run first with the -d option to do a dry run and view a list of files that would be deleted in an actual
run. If the initiator of the asdelete command is a Windows OS, files that contain ASCII characters (such as <, |, ?,
or ") are not deleted and an error is logged.

CAUTION: asdelete follows symbolic links, which can result in files being deleted that are not within
the target directory.

 asdelete --host host --auth-name username --auth-pass password /
source_directory /target_directory

For example:

 asdelete --host 10.0.0.1 --auth-name aspera --auth-pass !XF345lui@0 /
projectA/source /projectA/destination

View the target directory to confirm deletion of the correct files.

Aspera Sync

A complete guide to IBM Aspera Sync.

Introduction
Learn about the key features and capabilities of IBM Aspera Sync.

CAUTION:

Aspera Transfer Cluster Manager (ATCM) is not supported with Aspera Sync.

Overview
IBM Aspera Sync is a software application that provides high-speed, highly-scalable, multi-directional, file-
based replication and synchronization. Aspera Sync is designed to fill the performance gap of uni-directional file
synchronization tools like rsync, which are often slow for synchronizing large files and large sets of files over the
WAN. Additionally, Aspera Sync surpasses the capability of uni-directional synchronization tools with full support
for bi-directional synchronization.

Aspera Sync offers the following key capabilities:

• Utilizes high-speed Aspera FASP transport for moving data at maximum speed over the WAN, whereas
traditional synchronization tools are built on TCP. Aspera Sync transfers new data between remote hosts at full
bandwidth capacity, regardless of round-trip delay and packet loss, and does not degrade in performance for large
file sizes.

• Compares against a local snapshot, thereby avoiding making a comparison against the remote file system over the
WAN, which is used by most traditional tools and can be slow.

• Recognizes file system changes (such as moves and renames) on the source and propagates these changes to the
destination. Traditional tools treat these operations as deletion of old data and then recreate or re-transfer the new
data, which can lead to costly data copying over the WAN.

• Supports bi-directional and multi-directional synchronization topologies, where files are changing on multiple
nodes. For a bi-directional synchronization, Aspera Sync runs with a bi-directional option. For a multi-directional
synchronization, one session is run for each peer to remain sync. Any topology that has an acyclic graph topology
between peers is supported.

 | Aspera Sync | 209

• Uses file system notifications for change notification, when available.
• Monitors file contents and waits for files to be stable (no longer changing in md5sum) before transferring. The

wait period is configurable and is designed to avoid transferring only partially complete files.

Aspera Sync is a command-line tool, async, that uses an SSH connection to establish connectivity with its remote
peers and is spawned as an SSH subsystem binary on the remote system. The program can be run one time or
periodically (through a cron tab scheduled job) on file systems that do not provide asynchronous change notification,
or in a continuous mode on file systems that do support asynchronous change notification. Aspera Sync is designed
to process files and transfer new data in a continuous pipeline for maximum speed, even when running in scan-only
mode (when no file system change notification is available).

Sample Sync Deployment Diagram

Synchronization and Direction Modes
Aspera Sync offers two modes of operation: one-time ("on demand") synchronization and continuous
synchronization, as well as three direction modes: uni-directional, bi-directional, and multi-directional.

One-time vs. Continuous Synchronization

One-time synchronization

In this mode, async performs synchronization of the endpoints, and exits. If available, async uses an existing
snapshot to determine changes, unless specifically instructed to drop the snapshot and scan the file system again (see
the -x option in async Command Reference on page 223).

 | Aspera Sync | 210

This mode should be used for one_time operations, or for periodic, scheduled synchronizations where file systems do
not support event-based change notification. For the latter, async can be scheduled as a cron job to run periodically.

One-time synchronization is supported between all operating systems.

Continuous synchronization

In this mode, Aspera Sync synchronizes the endpoints and continues running. As file system updates occur (for
example, files or directories are added, deleted or modified), Aspera Sync detects these changes and synchronizes
with the peer endpoint.

Continuous mode is supported only when the file source is Windows, Linux, or macOS. See the following table for
the operating system requirements for the Aspera Sync server and client for the different Aspera Sync directions.

Continuous Aspera Sync Direction Supported Aspera Sync Client OS Supported Aspera Sync Server OS

PUSH Linux, Windows, macOS All

PULL All Linux, Windows, macOS

BIDI Linux, Windows, macOS Linux, Windows, macOS

Aspera Sync Direction Modes

Uni-directional

Similar to rsync, the uni-directional mode supports replication of files and directories, and any updates to these
(including deletions, renames, moves, and copies) from a source to a target. The direction of replication can be
specified as a "push" or "pull" operation, relative to the initiating host. Once a snapshot is taken after the first
replication, all file system updates are recognized against this snapshot, and no comparison of source to target over
the WAN is performed (as in rsync). Aspera Sync supports most of the same uni-directional synchronization
options as rsync, such as include/exclude filters, overwrite only if newer, symbolic link handling, and preservation
of file system ownership and timestamps.

Bi-directional

Bi-directional mode supports the replication of all file and directory updates between the peers. For any case in
which the most recent version of an update cannot be reliably determined, or when a file changes on both endpoints
concurrently, Aspera Sync flags the update as a conflict and leaves the peer file systems in their present state (and in
conflict). Files in conflict can be reviewed using the asyncadmin command-line tool (see asyncadmin Command-
Line Options on page 251). In this version, it is up to the operator to resolve conflicts manually.

Multi-directional

Multi-directional synchronization requires one Aspera Sync session (one async process execution) for each remote
peer. Any number of async processes can be run concurrently, and any number of peers can be synchronized
concurrently; however, a downstream peer cannot be configured to synchronize "back" in a loop to an upstream peer.

Aspera Sync FAQ
Get answers about what Aspera Sync does and how it does it.

What does Aspera Sync actually do?

Aspera Sync synchronizes new and modified files and directories between remote endpoints. It moves, deletes,
renames, and transfers new file contents as needed. For example:

• Moving a file out of the synchronized directory results in deletion at the remote peer.
• Moving a file into the synchronized directory results in a copy at the remote peer.
• Renaming a file in a previously synchronized directory renames the file at the remote peer; moving a file in a

previously synchronized directory results in the same move operation at the peer.

 | Aspera Sync | 211

How does Aspera Sync differ from rsync?

Aspera Sync is a high-speed replacement for rsync in uni-directional mode, and is designed to be a drop-in
replacement with similar command-line options. Aspera Sync also supports bi-directional and multi-directional
synchronization. The following key capabilities distinguish it from rsync:

• Uses Aspera's high-speed FASP transport technology, while rsync transfers over traditional TCP.
• Operates in push, pull and bi-directional modes.
• Circumvents the typically slower comparison of the local system to the remote system over the WAN, and instead,

it efficiently compares the current file system state to a snapshot of the last sync.
• Detects and implements file or directory moves and renames to avoid unnecessary transfers over the network.
• Waits for the systems to become stable (that is, it detects whether files are still being modified) before performing

synchronization.

For a comparison of async options versus rsync options, see rsync vs. async Uni-directional Example.

How is one-time mode different from continuous mode?

Aspera Sync offers two modes of operation: one-time ("on-demand") synchronization and continuous
synchronization. When running in one-time mode, it synchronizes once and exits. In continuous mode, on the other
hand, it offers constant synchronization between file systems.

Continuous mode can only be used where file system change notification (that is, inotify, which monitors file system
events) is available on the systems that are running async. NFS-mounted file systems do not support inotify change
notification for updates made by remote NFS clients, so in these scenarios, async should be run in one-time mode
(which can be scheduled through cron). The Aspera Sync scan mode is designed for maximum speed and is fully
pipelined with transfer, so as to allow for maximum performance even in one-time mode.

In what directions does Aspera Sync work?

Aspera Sync works in multiple directions: push, pull, and bi-directional.

• Aspera Sync supports pushing content from the local system to a remote system, and pulling content from a
remote system to the local system.

• Bi-directional synchronization occurs between two endpoints, such that file system changes on either end (local or
remote) are replicated on both sides.

How are conflicts handled in bi-directional mode?

A conflict situation can arise in bi-directional mode when a file or directory changes content, an entity is renamed
before synchronization has completed, or the change occurs on both endpoints concurrently such that the "newer"
version cannot be reliably determined. Aspera Sync reports such conflicts and does not modify either file system,
leaving the file systems in conflict. For instructions on resolving conflicts, see Resolving Bidirectional Aspera Sync
File Conflicts on page 256.

How much space is required for an Aspera Sync snapshot?

Snapshots require up to 1 GB of disk space for every 1 million files, and an additional 1 GB for cleanup purposes.
For optimum performance, Aspera recommends that the file system have at least 2 GB free per 1 million files, and 3
GB free per 1 million files on Windows (due to the poor performance of Windows NTFS when more than half of the
available disk space is occupied).

 | Aspera Sync | 212

Aspera Sync Set Up
Aspera Sync is installed when you install HST Server; your license must enable Aspera Sync. Before using Aspera
Sync, prepare the file systems to synchronize and plan your replication strategy, as described in the following
sections.

Configuring Aspera Sync Endpoints
Aspera Sync reads configuration settings from aspera.conf, which can be edited using asconfigurator
commands or manually. The following sections provide instructions for setting Aspera-recommended security
configuration, instructions for how to edit other configurations, a reference for many of the available configuration
options, and a sample aspera.conf.

Aspera-Recommended Configuration

Aspera recommends setting the following configuration options for greatest security. Additional settings are
described in the following table.

Note: To synchronize with AWS S3 storage, you must configure specific locations for the log and database
directories. For more information, see Synchronizing with AWS S3 Storage on page 243.

1. Set the location for the Aspera Sync log for each transfer user.

By default, Aspera Sync events are logged to the system log (see Logging on page 253). Aspera recommends
setting the log to a directory within the transfer user's home folder.

Log location, size, and log level can be configured for both ascp and async by setting default or user-specific
configurations in aspera.conf. For instructions, see Server Logging Configuration for Ascp and Ascp 4 on
page 69.

To set a logging directory for async that is separate from ascp, you can set async_log_dir. For example:

 asconfigurator -x
 "set_user_data;user_name,username;async_log_dir,log_dir"

Note: If async_log_dir is not set, then the logging configuration for ascp is applied. The client can override
the server logging settings with the -R option.

2. Set the location for the Aspera Sync database for each transfer user.

Aspera Sync uses a database to track file system changes between runs of the same session (see The Aspera Sync
Database on page 218). The Aspera Sync database should not be located on CIFS, NFS, or other shared file
systems mounted on Linux, unless you are synchronizing through IBM Aspera Proxy. If server data are stored on
a mount, specify a local location for the Aspera Sync database. Aspera recommends setting the database location
to a directory within the user's home folder by using the same approach as setting the local Aspera Sync log:

 asconfigurator -x "set_user_data;user_name,username;async_db_dir,db_dir"

This setting overrides the remote database directory specified by the client with the -B option.

Note: If the transfer user's docroot is a URL (such as file:////*), then async_db_dir must be set in
aspera.conf. For an example, see Synchronizing with AWS S3 Storage on page 243.

3. If the Aspera Sync source files are on a NFS or CIFS mount, create a mount signature file.

Aspera Sync can use a mount signature file to recognize that the source is on a mount. If you do not use the mount
signature file and the NFS or CIFS mount is unreachable, Aspera Sync considers those files as deleted and delete
them from the other endpoint.

 | Aspera Sync | 213

To create a mount signature file, create the file in the parent directory of the source directory on the mount. For
example, if the Aspera Sync directory is /mnt/sync/data, create the mount signature file /mnt/sync/
mount_signature.txt by running the following command:

 echo mount >> /mnt/sync/mount_signature.txt

When you run a Aspera Sync session, use --local-mount-signature=mount_signature.txt if the
local source is on a mount and --remote-mount-signature=mount_signature.txt if the remote
source is on a mount. For bidirectional Aspera Sync sessions between mounts, use both.

Configuring Other Settings

To configure Aspera Sync settings in aspera.conf by using asconfigurator commands, use the following
general syntax for setting default values (first line) or user-specific values (second line):

 asconfigurator -x "set_node_data;option,value"
 asconfigurator -x "set_user_data;user_name,username;option,value"

To manually edit aspera.conf, open it in a text editor with administrative privileges from the following location:

/opt/aspera/etc/aspera.conf

See an example aspera.conf following the settings reference table. For an example of the asperawatchd
configuration, see Watch Service Configuration on page 203.

After manually editing aspera.conf, validate that its XML syntax is correct by running the following command:

 asuserdata -v

This command does not check if the settings are valid.

Sync Configuration Options

asconfigurator option
aspera.conf setting

Description and Value Options

async_connection_timeout
<async_connection_timeout>

The number of seconds async waits for a connection to be established
before it terminates.

Value is a positive integer. (Default: 20) If synchronization fails and returns
connection timeout errors, which could be due to issues such as under-
resourced computers, slow storage, or network problems, set the value
higher, from 120 (2 minutes) to even 600 (10 minutes).

async_db_dir
<async_db_dir>

Specify an alternative location for the async server's snap database files. If
unspecified, log files are saved in the default location or the location that is
specified by the client with the -B option.

async_db_spec
<async_db_spec>

Value has the syntax sqlite:lock_style:storage_style.
(Default: undefined)

lock_style: Specify how async interfaces with the operating system.
Values depend on operating system.

Unix-based systems have the following options:

• empty or unix: The default method that is used by most applications.
• unix-flock: For file systems that do not support POSIX locking

style.

 | Aspera Sync | 214

asconfigurator option
aspera.conf setting

Description and Value Options

• unix-dotfile: For file systems that do not support POSIX nor flock-
locking styles.

• unix-none: No database-locking mechanism is used. Allowing a
single database to be accessed by multiple clients is not safe with this
option.

storage_style: Specify where Aspera Sync stores a local database that
traces each directory and file. Three values can be used:

• undefined or disk: The default option. Read and write the database
to disk. This provides maximum reliability and no limitations on the
number of files that can be synchronized.

• lms: The database is loaded from disk into memory at startup, changes
during the session are saved to memory, and the database is saved to
disk on exit. This option increases speed but all changes are lost if
async stops abruptly, and the number of synchronized files is limited
by available memory.

• memory: The database is stored completely in memory. This method
provides maximum speed but is not reliable because the database is not
backed up to disk.

async_enabled
<async_enabled>

Enable (set to true, default) or disable (set to false) Sync. When set
to false, the client async session fails with the error "Operation
'sync' not enabled or not permitted by license".

async_log_dir
<async_log_dir>

Specify an alternative location for the async server's log files. If unspecified,
log files are saved in the default location or the location that is specified
by the client with the -R option. For information on the default log file
location, see Logging on page 253.

async_log_level
<async_log_level>

Set the amount of detail in the async server activity log. Valid values are
log (default), dbg1, or dbg2.

async_session_timeout
<async_session_timeout>

The number of seconds async waits for a non-responsive session to resume
before it terminates. Value is a positive integer. (Default: 20)

directory_create_mode
<directory_create_mode>

Specify the directory creation mode (permissions). If specified,
create directories with these permissions irrespective of
<directory_create_grant_mask> and permissions of the directory
on the source computer. This option is applied only when the server is a
Unix-based receiver.

Value is a positive integer (octal). (Default: undefined)

directory_create_grant_mask
<directory_create_grant_mask>

Specify the mode for newly created directories if
directory_create_mode is not specified. If specified, directory
modes are set to their original modes plus the grant mask values. This
option is applied only when the server is a Unix-based receiver and when
directory_create_mode is not specified.

Value is a positive integer (octal). (Default: 755)

preserve_acls
preserve_xattrs

Specify if the ACL access data (acls) or extended attributes (xattrs)
from Windows or macOS files are preserved. Three modes are supported.
(Default: none)

 | Aspera Sync | 215

asconfigurator option
aspera.conf setting

Description and Value Options

<preserve_acls>
<preserve_xattrs>

native: acls or xattrs are preserved by using the native capabilities
of the file system. If the destination does not support acls or xattrs,
async generates an error and exits.

metafile: acls or xattrs are preserved in a separate file. The file
is in the same location and has same name, but has the added extension
.aspera-meta. The .aspera-meta files are platform-independent,
and files can be reverted to native form if they are synchronized with a
compatible system.

none: No acls or xattrs data is preserved. This mode is supported on
all file systems.

ACL preservation is only meaningful if both hosts are in the same domain.
If a SID (security ID) in a source file does not exist at a destination, the sync
proceeds but no ACL data is saved and the log records that the ACL was not
applied.

The aspera.conf settings for acls or xattrs can be overwritten
by using the --preserve-acls or --preserve-xattrs options,
respectively, in a command-line async session.

Example Sync Configuration in aspera.conf

<file_system>
 ...
 <directory_create_mode> </directory_create_mode>
 <directory_create_grant_mask>755</directory_create_grant_mask>
 <preserve_acls>none</preserve_acls>
 <preserve_xattrs>none</preserve_xattrs>
 ...
</file_system>
 ...
<default>
 ...
 <async_db_dir> </async_db_dir>
 <async_db_spec> </async_db_spec>
 <async_enabled>true</async_enabled>
 <async_connection_timeout>20</async_connection_timeout>
 <async_session_timeout>20</async_session_timeout>
 <async_log_dir>AS_NULL</async_log_dir>
 <async_log_level>log</async_log_level>
 ...
</default>

Viewing Aspera Sync Transfers in the Aspera GUI
The HST Server GUI shows async-initiated transfers if Aspera Sync is run on the machine (as client) by default,
whereas server async transfers are not shown.

In the following example, the GUI shows transfers associated with a Aspera Sync job in which the remote user,
aspera, is pushing files to the server folder for Project X.

You can configure the server and client reporting to the Aspera GUI with the following options.

Server reporting:

Server reporting is disabled by default. To enable the server to report Aspera Sync-initiated transfers:

 | Aspera Sync | 216

1. Run the following command on the server:

 asconfigurator -x "set_node_data;async_activity_logging,true"

2. Restart asperanoded to activate your changes.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Client reporting:

Client reporting is enabled by default. To disable the client from reporting Aspera Sync-initiated transfers, run the
following command on the client machine:

 asconfigurator -x "set_client_data;async_management_activity_logging,false"

You do not need to restart asperanoded for this change to take effect.

Symbolic Link Handling

When transferring files using FASP (ascp, ascp4, or async), you can configure how the server and client handle
symbolic links.

Note: Symbolic links are not supported on Windows. Server settings are ignored on Windows servers. If the transfer
destination is a Windows computer, the only supported option that the client can use is skip.

Symbolic Link Handling Options and their Behavior

• Follow: Follow a symbolic link and transfer the contents of the linked file or directory as long as the link target is
in the user's docroot.

• Follow_wide (Server only): For downloads, follow a symbolic link and transfer the contents of the linked file or
directory even if the link target is outside of the user's docroot. Use caution with this setting because it might
allow transfer users to access sensitive files on the server.

• Create (Server only): If the client requests to copy symbolic links in an upload, create the symbolic links on the
server.

• None (Server only): Prohibit clients from creating symbolic links on the server; with this setting clients can only
request to follow or skip symbolic links.

• Copy (Client only): Copy only the symbolic link. If a file with the same name exists at the destination, the
symbolic link does not replace the file.

• Copy+force (Client only): Copy only the symbolic link. If a file with the same name exists at the destination, the
symbolic link replaces the file. If the file of the same name at the destination is a symbolic link to a directory, it
is not replaced.

Note: A4 and Sync do not support the copy+force option.
• Skip (Client only): Skip symbolic links. Neither the link nor the file to which it points are transferred.

Symbolic link handling depends on the server configuration, the client handling request, and the direction of transfer,
as described in the following tables. Multiple values can be set on the server as a comma-delimited list, such as the
default "follow,create". In this case, the options are logically ORed based on the client's handling request.

Send from Client to Server (Upload)

Server setting
= create, follow
(default)

Server setting =
create

Server setting =
follow

Server setting =
follow_wide

Server setting =
none

Client setting =
follow

Follow Follow Follow Follow Follow

 | Aspera Sync | 217

Server setting
= create, follow
(default)

Server setting =
create

Server setting =
follow

Server setting =
follow_wide

Server setting =
none

(default for ascp
and ascp4)

Client setting =
copy

(default for
async)

Copy Copy Skip Skip Skip

Client setting =
copy+force

Copy and replace
any existing files.

Copy and replace
any existing files.

Skip Skip Skip

Client setting =
skip

Skip Skip Skip Skip Skip

Receive to Client from Server (Download)

Server setting
= create, follow
(default)

Server setting =
create

Server setting =
follow

Server setting =
follow_wide

Server setting =
none

Client setting =
follow

(default for ascp
and ascp4)

Follow Skip Follow Follow even
if the target is
outside the user's
docroot.

Skip

Client setting =
copy

(default for
async)

Copy Copy Copy Copy Copy

Client setting =
copy+force

Copy and replace
any existing files.

Copy and replace
any existing files.

Copy and replace
any existing files.

Copy and replace
any existing files.

Copy and replace
any existing files.

Client setting =
skip

Skip Skip Skip Skip Skip

Server and Client Configuration

Server Configuration

To set symbolic link handling globally or per user, run the appropriate command:

 asconfigurator -x "set_node_data;symbolic_links,value"
 asconfigurator -x "set_user_data;user_name,username;symbolic_links,value"

For more information, see aspera.conf - File System Configuration on page 54.

Client Configuration

To specify symbolic link handling on the command line (with ascp, ascp4, or async), use --symbolic-
links=option.

 | Aspera Sync | 218

The Aspera Sync Database
Each async session creates a database (snap.db) that is stored on both the local (client) computer and the remote
(server) computer. The database records the state of the file system at the end of the last async session, and the next
time the session is run, the file system is compared to the database to identify changes.

Aspera Sync Database Location and Structure

Aspera Sync creates private directories (.private-asp) to store the database and in-progress transfers (a transfer
cache for pending files).

The Aspera Sync database directory is stored on the local computer in the directory specified by the -b option
in the command line, and on the remote computer in the directory set for <async_db_dir> in the server's
aspera.conf (or set by the client with -B if no value is set on the server).

Note: The Aspera Sync database does not work on CIFS, NFS, or other mounted shared file systems; therefore, -B
and -b must specify a directory on a file system physically local to the endpoint host.

Multiple async sessions can synchronize the same directory or specify the same database directory (-b or -B), so
for each session async creates a subdirectory in .private-asp that is named with the session name specified by
-N. To allow the session name to be used as a directory name, names can only use standard alphanumeric characters
and "_" and "-" characters.

Each async session must have a unique name. If multiple sessions synchronize the same directory or specify the
same database directory (-b/-B), then the session names must be unique. For example, you run an async session
named job1 that synchronizes the local directory /data and the remote directory /data1, and that stores the
database in /sync/db on both endpoints. You cannot run another async session named job1 that synchronizes /
data with /data2 and that stores the database in /sync/db; you must either run the session with a unique name
or store the database in a different location.

Example 1: Bi-directional async

 -N ex1 -b /var/db -B /opt/aspera/var -d /data/users -r root@server:/
storage/users -K bidi

The above command creates the following:

On the local computer (client):

• /var/db/.private-asp/ex1/snap.db

• /data/users/.private-asp/ex1 (for transfer cache)

On the remote computer (server):

• /opt/aspera/var/.private-asp/ex1/snap.db

• /storage/users/ex1 (for transfer cache)

Example 2: Uni-directional async

 -N ex2 -b /var/db -B /opt/aspera/var -d /data/users -r root@server:/
storage/users -K push

The above command creates the following:

On the local computer (client):

/var/db/.private-asp/ex2/snap.db

On the remote computer (server):

/opt/aspera/var/.private-asp/ex2/snap.db

/storage/users/ex2 (for transfer cache)

 | Aspera Sync | 219

Changing Synchronization Direction Between Runs of the Same Session

Changing direction between runs of the same session is not supported. async fails with an error message and you
must run it with -x (or --reset) or provide a new database directory.

Note: The -x or --reset options delete the existing database, and Aspera Sync must create a new one, which can
take a long time if the file system contains many files and directories.

Starting a Aspera Sync Session When a Sync Database is Missing

If the database is missing or corrupted on either endpoint, repeating an async session fails with error messages
similar to the following (in these examples, /sync/peer is the remote database directory and the session is named
push):

Failed. Peer error: Local snapshot DB exists but remote snapshot DB /sync/
peer/.private-asp/push/snap.db does not exist
Failed. Peer error: file is encrypted or is not a database
Failed. Peer error: Corrupt database /sync/peer/.private-asp/push/snap.db

If this is the case, you can run async with -x or --reset. This option rebuilds the database, which can take some
time for very large directories. A Aspera Sync session run with --reset has the following behavior:

1. If the private directory (.private-asp) is missing, Aspera Sync creates it.
2. If the database directory (.private-asp/session_name) is missing (and, therefore, the database file

snap.db doesn’t exist), Aspera Sync creates snap.db and its directory.
3. If the database directory does not contain the snap.db file, Aspera Sync creates it.

Deleting a Snapshot Database During Synchronization

Deleting either of the snapshot databases (client or server) that are in use by an active synchronization session results
in undefined behavior. To recover, stop async, delete the database on the other side as well, and restart the session.

Running async
Aspera Sync uses the async command line tool to synchronize content from the source to the destination. async
has many options for customizing the behavior of the synchronization, and this section describes how to compose an
async session, the command line arguments, and examples for specific use cases.

Composing an Async Session
Aspera Sync has more than 80 options that can be used when composing an async session, but only a few are
required, and Aspera recommends using several others. These instructions describe how to compose a bidirectional
async session between a Windows client and a Linux server, and includes the required and recommended options
in the correct order. You can use the short form or long form (POSIX) option tags and the complete commands using
both tag formats are summarized at the end.

For a complete list and descriptions of available options, see the async Command Reference on page 223. For
configuration and option usage required to synchronize with AWS S3 storage, see Synchronizing with AWS S3
Storage on page 243.

1. Confirm that both endpoints have Aspera Sync-enabled licenses and that the remote endpoint is running an Aspera
transfer server application (HST Server or HST Endpoint).

Run ascp -A in the command line and look for sync2 in the Enabled settings section.

2. Begin by invoking async.

 async

3. Enter instance options.

 | Aspera Sync | 220

Instance options are used to configure the local (client) computer for the async session and are mostly optional.
Aspera recommends that you include -L log_dir (or --alt-logdir=log_dir) to set client-side logging
to a directory that you can access, because you might not have permission to access the log in its default location
(see Logging on page 253). The logging directory must not be in the directory that is being synchronized.

For example, if the Windows client's username is Morgan, Morgan can use -L to log to a directory in the home
folder:

async -L "C:\Users\Morgan\Aspera jobs\log"

In this example, the path must be in quotes because the path includes a folder name that contains a space. For
more information on path formatting, see async Command Reference on page 223.

4. Name the session by using the -N option (or --name=pair).

-N pair is required in async commands. The value for pair is a name that uniquely identifies the Aspera Sync
session and is visible in IBM Aspera Console. -N pair must follow any instance options and must precede all
session arguments. Names can only use standard alphanumeric characters, plus "_" and "-" characters.

Note: If your remote host is an Aspera cluster, ensure that your session name is unique by naming
the session with a descriptive string followed by the UUID of the local host, such as "cluster-sync-
ba209999-0c6c-11d2-97cf-00c04f8eea45".

For example, name the session job1:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1

Once you name the session, you enter the session options. Session options define the transfer parameters including
authentication, transfer rate and policy, database storage, and the folders to synchronize.

5. Provide authentication credentials.

Aspera Sync supports three methods of authenticating to the server: SSH key, password, and basic token. Aspera
recommends using SSH keys, unless your server requires a basic token.

• SSH key: To use SSH key authentication, your SSH public key must be configured on the remote server. For
instructions on creating keys and setting them up on the server, see the IBM Aspera High-Speed Transfer
Server Admin Guide. Specify the path to your private key file by using the -i file (or --private-key-
path=file) option.

• Password: The password is the one associated with the Aspera transfer user account on the server. You can
provide the password as an environment variable (ASPERA_SCP_PASS) or when prompted after starting the
command.

• Basic token: Basic tokens are used for synchronizing with Aspera products that require access key
authentication, such as IBM Aspera on Cloud transfer service (AoCts). For instructions on creating the basic
token, see Aspera Sync with Basic Token Authorization on page 245. You can provide the token as an
environment variable (ASPERA_SCP_TOKEN) or in the command line using the -W token_string (or
--token=token_string) option.

For example, use -i and specify the path to Morgan's SSH private key in their home folder:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa

In this case, the path to the SSH key can use platform-agnostic path separators (/) and be entered without quotes
around it because it does not have a space in it.

6. If the local data are stored on a mount or object storage, specify the locations for the local snapshot database.

The snapshot database cannot be located on CIFS, NFS, or other shared file systems mounted on Linux. If
the local files and directories specified in the previous step are on a mount, you must specify a local location
using -b db_dir (or --local-db-dir=db_dir). The database must not be in the directory that is being
synchronized.

https://downloads.asperasoft.com/en/documentation/4
https://downloads.asperasoft.com/en/documentation/4

 | Aspera Sync | 221

For example, use -b to store the local snapshot database in Morgan's "Aspera jobs" folder:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db"

7. Set transfer parameters.

The same transfer rate and transfer policy options that are used to control ascp transfers can be applied to
async sessions. Aspera recommends setting a target rate that is based on your available bandwidth and system
capabilities. Set the target (maximum) rate using -l rate (or --target-rate=rate).

For example, use -l to set the target rate to 500 Mbps:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db" -l 500m

8. Specify the local directory for synchronization.

Enter the local directory using -d ldir (or --local-dir=ldir).

For example, use -d to set the local directory to Morgan's data folder:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db" -l 500m -d c:/
users/morgan/data

9. Specify the transfer username, remote host, and remote directory for synchronization.

Unlike previous options for which one short option flag was equivalent to one long option flag, when specifying
the username, remote host, and remote directory, the short flag option is the equivalent of one to three long option
flags. For example, if the username is morgan, the remote host IP address is 10.0.0.1, and the remote directory is /
data, then the following options are equivalent to each other:

-r morgan@10.0.0.1:/data
--remote-dir=morgan@10.0.0.1:/data
--user=morgan --remote-dir=10.0.0.1:/data
--user=morgan --host=10.0.0.1 --remote-dir=/data

If the name of your remote directory contains an "@", use the --user option so that the "@" is not treated
specially in the argument for --remote-dir.

For example, use -r to set the username, remote host, and remote directory:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db" -l 500m -d c:/
users/morgan/data -r morgan@10.0.0.1:/data

10. If a source directory is on an NFS or CIFS mount, require Aspera Sync to use the mount signature file.

Warning: If you do not use the mount signature file and the NFS or CIFS mount is unreachable, Aspera
Sync considers those files as deleted and deletes them from the other endpoint.

If the local endpoint is on a NFS or CIFS mount and the Aspera Sync is push or bidirectional, use --local-
mount-signature. If the remote endpoint is on a NFS or CIFS mount and the Aspera Sync is pull or
bidirectional, use --remote-mount-signature.

11. Specify the locations for the remote Aspera Sync log and database.

On the server, Aspera Sync logs to the default location (see Logging on page 253) if no location is specified for
<async_log_dir> in the server's configuration file. Aspera recommends using -R (or --remote-logdir)
to specify a logging location to which you have access. The location must be within your docroot on the server,
unless you are synchronizing with AWS S3 object storage. -R is overridden by the server's configuration file. If
you are restricted to aspshell on the server, you cannot use this option.

 | Aspera Sync | 222

Aspera also recommends using -B (or --remote-db-dir) to specify a location for the remote Aspera Sync
database. As with the log file, the location must be within your docroot, it is overridden by <async_db_dir> in
the server's configuration file, and you cannot use this option if you are restricted to aspshell.

As on the local computer, the Aspera Sync log and database must not be in a directory that is being synchronized.

For example, to set the remote log and snapshot database files to Morgan's home folder:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db" -l 500m -d c:/
users/morgan/data -r morgan@10.0.0.1:/data -R /morgan/async/log -B /
morgan/async/db

12. Specify the synchronization mode.

Aspera Sync can be run in three modes:

• push: The contents of ldir are synchronized to rdir, with the ldir content overwriting the rdir content, by
default (unless the overwrite options are specified otherwise, such as to only overwrite if rdir is older, or never
overwrite).

• pull: The contents of rdir are synchronized to ldir, with the rdir content overwriting the ldir content, by
default.

• bidi (bi-directional): The contents of ldir and rdir are synchronized, with newer versions of files and
directories overwriting older versions in either ldir or rdir, by default.

To synchronize the remote folder with the local folder use -K push (or --direction=push).

For example, use -K bidi to do a bidirectional sync:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db" -l 500m -d c:/
users/morgan/data -r morgan@10.0.0.1:/data -R /morgan/async/log -B /
morgan/async/db -K bidi

13. Preserve file attributes.

When a file or directory is transferred between computers, the file is written to the destination as the transfer user
and the file modification time (and creation time on Windows) are reset. Most users prefer to preserve timestamps
from the source to the destination by using the -t option.

For example, use -t timestamps:

async -L "C:\Users\Morgan\Aspera jobs\log" -N job1 -i c:/users/
morgan/.ssh/id_rsa -b "C:\Users\Morgan\Aspera jobs\db" -l 500m -d c:/
users/morgan/data -r morgan@10.0.0.1:/data -R /morgan/async/log -B /
morgan/async/db -K bidi -t

Note: When synchronizing between Unix-like operating systems, you can also preserve the user IDs (uid) and
group IDs (gid) from the source to the destination by using the options -u -j (equivalent to --preserve-uid
--preserve-gid).

Extended file attributes and ACLs can also be preserved; see the async Command Reference on page 223.
When using --dedup, file metadata preservation is supported for copy.

Summary

The instructions created the following Aspera Sync session, shown using short option flags and POSIX (long) flags.
Each option is shown on a separate line for clarity, but should be entered in the command line as a single line.

Warning: This example does not include the option to make Aspera Sync check for a mount signature file.
If a source is on a NFS or CIFS mount, include --local-mount-signature and --remote-mount-
signature to prevent Aspera Sync from deleting files on an endpoint if a mount becomes unavailable. For
instructions, see Configuring Aspera Sync Endpoints on page 212.

 | Aspera Sync | 223

Using short-format option flags:

async
 -L "C:\Users\Morgan\Aspera jobs\log"
 -N job1
 -i c:/users/morgan/.ssh/id_rsa
 -b "C:\Users\Morgan\Aspera jobs\db"
 -l 500m
 -d c:/users/morgan/data
 -r morgan@10.0.0.1:/data
 -R /morgan/async/log
 -B /morgan/async/db
 -K bidi
 -t

Using long-format option flags:

async
 --alt-logdir="C:\Users\Morgan\Aspera jobs\log"
 --name=job1
 --private-key-path=c:/users/morgan/.ssh/id_rsa
 --local-db-dir="C:\Users\Morgan\Aspera jobs\db"
 --target-rate=500m
 --local-dir=c:/users/morgan/data
 --user=morgan
 --host=10.0.0.1
 --remote-dir=/data
 --remote-logdir=/morgan/async/log
 --remote-db-dir=/morgan/async/db
 --direction=bidi
 --preserve-time

If the session is between Linux computers, it also includes the following session options:

-u
-j

Or using long-format option flags:

--preserve-uid
--preserve-gid

async Command Reference
An async session accepts the following options, some of which are required.

Syntax

 async [instance_options] -N pair -d ldir -r [user@host:rdir]
 [session_options] ...

Note: Transfers started by async can be controlled from the HST Server GUI. Canceling an async transfer in the
GUI shuts down async.

Required Command Options

Naming the async session: -N pair

 | Aspera Sync | 224

-N pair is required in async commands. The value for pair is a name that uniquely identifies the Aspera Sync
session and is visible in IBM Aspera Console. -N pair must follow any instance options and must precede all
session arguments. Names can only use standard alphanumeric characters, plus "_" and "-" characters.

Note: If your remote host is an Aspera cluster, ensure that your session name is unique by naming
the session with a descriptive string followed by the UUID of the local host, such as "cluster-sync-
ba209999-0c6c-11d2-97cf-00c04f8eea45".

Specifying filepaths and filenames: ldir and rdir

ldir specifies the local directory to be synchronized and rdir specifies the remote directory to be synchronized. File
paths and filenames must follow these rules:

• The drive letter is required in Windows paths, unless the server's aspera.conf file has a docroot defined for
the user. If no drive letter is included when syncing with a Windows computer and docroot is not defined for
the user, async displays the error message: "Failed. Peer error: Remote directory is not absolute."

• You can synchronize Windows, Linux, macOS, and other Unix-based endpoints and servers, but must take care
with path separators. The path separator "/" is supported on Windows and other platforms. The path separator "\"
is platform-agnostic only for the options -d/r/L/R/B/b and --keep-dir-local/remote. In Aspera Sync
filtering rules, however, "\" is exclusively a quoting operator and "/" is the only path separator recognized.

• File names may not contain \n, \r, or \. Files with these in their names are skipped.
• When scanning or monitoring a file system for changes, async skips over files with names that end in one of the

special suffixes specified in aspera.conf with <resume_suffix> and <partial_file_suffix> . To
disable this behavior, you can set these values to the empty string. <resume_suffix> defaults to .aspx. The
<partial_file_suffix> tag defaults to the empty string, but is often set to .partial.

Warning: If a source is on a NFS or CIFS mount, use --local-mount-signature or --remote-
mount-signature (or both if both endpoints are on mounts and the Aspera Sync is bidirectional) to
prevent Aspera Sync from deleting files on the non-mount endpoint if the mount becomes unavailable. For
instructions on creating mount signature files, see Configuring Aspera Sync Endpoints on page 212.

Specifying the direction of the sync: -K direction

Aspera Sync has three modes of synchronization: push, pull, and bidi.

• push: The contents of ldir are synchronized to rdir, with the ldir content overwriting the rdir content, by
default (unless the overwrite options are specified otherwise, such as to only overwrite if rdir is older, or never
overwrite).

• pull: The contents of rdir are synchronized to ldir, with the rdir content overwriting the ldir content, by default.
• bidi (bi-directional): The contents of ldir and rdir are synchronized, with newer versions of files and directories

overwriting older versions in either ldir or rdir, by default.

Using continuous mode: -C

Continuous mode is supported only when the file source is Windows, Linux, or macOS. See the following table for
the operating system requirements for the Aspera Sync server and client for the different Aspera Sync directions.

Continuous Aspera Sync Direction Supported Aspera Sync Client OS Supported Aspera Sync Server OS

PUSH Linux, Windows, macOS All

PULL All Linux, Windows, macOS

BIDI Linux, Windows, macOS Linux, Windows, macOS

One-time synchronization is supported between all operating systems.

The following tables are complete command-line options references. View an abbreviated version from the command
line by running:

 async -h

 | Aspera Sync | 225

For examples of async commands and output, see Examples of Async Commands and Output on page 236.

Environment Variables

If needed, you can set the following environment variables for use with async. The total size for environment
variables depends on your operating system and transfer session. Aspera recommends that each environment variable
value should not exceed 4096 characters.

ASPERA_SCP_COOKIE=cookie

Set the transfer user cookie. Overridden by --cookie.

ASPERA_SCP_LICENSE=license_string

Set a base64-encoded Aspera license string.

ASPERA_SCP_PASS=password

Set the transfer user password. Overridden by -w and --pass.

ASPERA_SCP_TOKEN=token

Set the transfer user authorization token. Overridden by -W and --token.

Instance Options
-A, --version

Display the async version information and license information.

--apply-local-docroot

Prepend the local docroot to the local directory.

-D[D..]

Log at the specified debug level. Default is 0. Additional Ds return more messages.

-h, --help

Display help for command-line options.

-L log_dir, --alt-logdir=log_dir

Log to the specified logging directory on the local host. If the directory doesn't exist, async creates
it for you.

-q, --quiet

Disable all output.

--watchd=datastore:host:port[:domain]

Use asperawatchd connected to the specified Redis for the transfer session. datastore can be redis
or scalekv.

For example:

--watchd=redis:localhost:31415

The optional domain argument allows you to specify if the domain is other than the default . For
more information see Using the Aspera Watch Service with Aspera Sync on page 246.

Session Options

-a policy, --rate-policy=policy

Transfer with the specified rate policy. policy can be fixed, fair, high, or low. Default:
fair

--assume-no-mods

Assume that the directory structure has not been modified. If a directory's modification time has not
changed compared to the Aspera Sync database, async in non-continuous mode skips scanning the

 | Aspera Sync | 226

directory. This option makes scanning static directory structures faster. Aspera recommends using
--exclude-dirs-older-than instead of this option.

-B rdbdir, --remote-db-dir=rdbdir

Save the remote database to the specified directory. Similar to -b, but applies to the remote
database. For further usage information, see The Aspera Sync Database on page 218. Default:
.private-asp at the root level of the synchronized directory. The directory is created if it
does not already exist. If <async_db_dir> is set in aspera.conf on the server, that setting
overrides the location specified with -B .

-b ldbdir, --local-db-dir=ldbdir

Use the specified local database directory. Default: .private-asp at the root level of the
synchronized directory.

You can save the Aspera Sync database to a different location than the default one under the ldir
specified with -d. This allows you to store the database away from the main data files, which is
useful for performance tuning. It is also useful when -d ldir is located on a network share volume
that does not reliably support database locking. For more usage information, see The Aspera Sync
Database on page 218.

-C, --continuous

Run continuous synchronization. Default: disabled.

Usage notes:

• Continuous mode is supported only when the file source is Windows or Linux. Continuous pulls
can be run from any operating system if the source is Windows or Linux. Continuous push can
be run only by Windows or Linux. Continuous bidi requires that both the Aspera Sync client and
server are Windows or Linux.

• If a file is open, async cannot transfer the file due to sharing violations and might ignore the
file if it is closed without changes. To specify the maximum number of retries after a sharing
violation, use with --sharing-retry-max. To enable periodic scans that detect when an
opened file has been closed and is ready for transfer, use with --scan-interval.

• If you receive an inotify error when attempting to run continuous synchronization, see
Troubleshooting Continuous Aspera Sync Errors on page 255.

-c cipher, --cipher=cipher

Encrypt file data with encryption algorithm. Aspera supports three sizes of AES cipher keys (128,
192, and 256 bits) and supports two encryption modes, cipher feedback mode (CFB) and Galois/
counter mode (GCM). The GCM mode encrypts data faster and increases transfer speeds compared
to the CFB mode, but the server must support and permit it.

Cipher rules

The encryption cipher that you are allowed to use depends on the server configuration and the
version of the client and server:

• When you request a cipher key that is shorter than the cipher key that is configured on the
server, the transfer is automatically upgraded to the server configuration. For example, when the
server setting is AES-192 and you request AES-128, the server enforces AES-192.

• When the server requires GCM, you must use GCM (requires version 3.9.0 or newer) or the
transfer fails.

• When you request GCM and the server is older than 3.8.1 or explicity requires CFB, the transfer
fails.

• When the server setting is "any", you can use any encryption cipher. The only exception is when
the server is 3.8.1 or older and does not support GCM mode; in this case, you cannot request
GCM mode encryption.

• When the server setting is "none", you must use "none". Transfer requests that specify an
encryption cipher are refused by the server.

 | Aspera Sync | 227

Cipher Values

Value Description Support

aes128
aes192
aes256

Use the GCM or CFB encryption
mode, depending on the server
configuration and version (see cipher
negotiation matrix).

All client and server versions.

aes128cfb
aes192cfb
aes256cfb

Use the CFB encryption mode. Clients version 3.9.0 and newer, all
server versions.

aes128gcm
aes192gcm
aes256gcm

Use the GCM encryption mode. Clients and servers version 3.9.0 and
newer.

none Do not encrypt data in transit. Aspera
strongly recommends against using
this setting.

All client and server versions.

• NONE - Do not encrypt data in transit. Aspera strongly recommends against using this setting.
• AES128, AES192, AES256 - Use the GCM or CFB encryption mode, depending on the server

configuration and version. Supported by all client and server versions.
• AES128CFB, AES192CFB, AES256CFB - Use the CFB encryption method. Supported by

clients and servers version 3.9.0 and newer.
• AES128GCM, AES192GCM, AES256GCM - Use the GCM encryption mode. Supported by

clients and servers version 3.9.0 and newer.

Default: AES128.

Client-Server Cipher Negotiation

The following table shows which encryption mode is used depending on the server and client
versions and settings:

Server, v3.9.0+

AES-XXX-GCM

Server, v3.9.0+

AES-XXX-CFB

Server, v3.9.0+

AES-XXX

Server, v3.8.1 or
older

AES-XXX

Client, v3.9.0+

AES-XXX-GCM

GCM server refuses
transfer

GCM server refuses
transfer

Client, v3.9.0+

AES-XXX-CFB

server refuses
transfer

CFB CFB CFB

Client, v3.9.0+

AES-XXX

GCM CFB CFB CFB

Client, v3.8.1 or
older

AES-XXX

server refuses
transfer

CFB CFB CFB

--check-sshfp=fingerprint

Compare fingerprint to the remote host key hash and fail on mismatch.

 | Aspera Sync | 228

--clean-excluded

Remove excluded directories from snap.db on both Aspera Sync endpoints to decrease the size
of snap.db. This option applies when directories are excluded by path (--exclude) or by
modification time (--exclude-dirs-older-than). If the remote endpoint is running Aspera
Sync older than 3.8.0, then the option is accepted (the session does not fail) but it has no effect on
either endpoint.

--compression={zlib|none}

Compress a file before transfer using the specified method. Default: none.

--cookie=cookie

Specify a user-defined identification string to report to the Aspera Management interface. cookie
cannot contain the special characters \r, \n, or \0.

--cooloff=sec

Delay the start of the transfer. For example, if --cooloff=5, async waits 5 seconds before
copying a file. If --cooloff=0 transfers start immediately. The client and server use the same
cooloff period. Valid range for sec: integers 0-60. Default: 3.

--cooloff-max=sec

Wait up to the specified time (in seconds) for a file to stop changing before skipping
synchronization of the file. Using this option prevents a one-time sync from waiting on a constantly
changing file. The file is skipped and reported as an error. Default: 0 (disabled).

--create-dir

Create the source directory, target directory, or both if they do not exist, rather than reporting an
error and quitting. Use with -d and -r.

-d ldir, --local-dir=ldir

Synchronize the specified local directory. Use --create-dir to create the remote directory if it
does not already exist.

--dedup[=mode]

Take the specified the action when Aspera Sync detects duplicate files on the source, even if they
have different pathnames. Requires -k with a full checksum. Available modes are hardlink,
inode (only supported for Unix-based OSes), or copy. Default: hardlink.

• hardlink - When two or more source files are duplicates, a hardlink is created between
them on the target. This saves storage by preventing multiple copies of the same file from
accumulating on the target. The files on the target have the same inode, even if the source files
have different inodes. The target must be running a Unix-based operating system. File metadata
preservation options (-u and -j) are not supported with this option.

• inode - When two or more source files have matching inodes, a hardlink is created between
them on the target and the target files have matching inodes. This option is supported only
between Unix-based platforms. If --dedup=inode is used in a continuous sync, Aspera
recommends using the scan-interval option.

• copy - After a file is synchronized on the target, the synchronized file is copied to the duplicate.
This saves bandwidth by not transferring duplicate files. This mode is useful when the target is
Windows. File metadata preservation options (-u and -j) are supported with this option.

Without the dedup option, all duplicate files are synchronized. Duplicates might still be
synchronized, rather than hardlinked or copied, if one of the duplicates has not yet been
synchronized on the target.

--delete-delay

Postpone the actual deletion of files or directories until the end of the synchronization. Use this
option to prevent transfer delays that can occur when deletions are slow on the destination.

-E file, --exclude-from=file

 | Aspera Sync | 229

Skip paths specified in the filter file. For more information on setting filters, see Include and
Exclude Filtering Rules on page 237.

--exclude="pattern"

Exclude paths that match pattern. Wildcards, such as * and ?, are supported but rules containing
them must be in double quotes. For example, --exclude="*.jpg". For more information, see
Include and Exclude Filtering Rules on page 237.

--exclude-dirs-older-than=mtime

After the initial scan, do not scan directories during subsequent synchronizations if they or their
parents have a recursive modified time older than the specified value. The recursive modified time
of a directory is the most recent modification time of it or any of its children (file or directory).
Use this option to avoid rescanning directories that are known to be unchanged since the previous
synchronization, such as a monthly archive directory structure in which only the most recent
subdirectory is being modified.

mtime may be specified in any one of the following ways:

• As a positive number of seconds since 1970-01-01 00:00:00, for Unix and POSIX-compliant
operating systems.

Note: Some file servers, such as Windows NT, use a different epoch for the recursive modified
time. In this case, MTIME should be specified as a duration relative to present or UTC
timestamp.

• As a UTC timestamp with the format YYYY-MM-DDTHH:MM:SS, such as
2015-01-01T08:00:00.

• As a duration formatted as DDd HH:MM:SS or WWw DDd HHh MMm SSs. Directories whose
"mtime" is older than Now minus MTIME are not scanned. Input requirements: Leading zero
fields and spaces may be omitted. The leftmost fields are optional, but fields to the right of the
largest unit specified are required. For example, to exclude directories older than 24 hours, you
could specify 1d 0:0:0, 24:00:00, or 24h 00m 00s, but not 1d.

This option does not apply to the root directory.

Note: Aspera Sync stops and returns an error if the first run of async and the next run do not
use the same --exclude-dirs-older-than option. If the first run specifies --exclude-
dirs-older-than, then the next run must use this option, too. If the first run does not include
--exclude-dirs-older-than, then the next run fails if this option is specified.

-G size, --write-block-size=size

Use the specified block size for writing. size is an integer with units of K, M, or bytes. Default: 64
MB.

-g size, --read-block-size=size

Set block size for reading. size is an integer with units of K, M, or bytes. Default: 64 MB.

-H val, --scan-intensity=val

Scan at the set intensity. val can be vlow, low, medium, high, or vhigh. vlow minimizes
system activity. vhigh maximizes system activity by continuously scanning files without rest.
Default: medium.

--host=host

Synchronize with the remote host that is specified by hostname or IP address. If the remote host is
a cluster, enter the cluster DNS. When using --host=, the characters "@" and ":" are not treated
specially in the argument to -r or --remote-dir. The transfer username cannot be specified as
part of the remote directory filepath. Instead, it must be set with --user= or in the environment
variable $user (on Windows, %USER%). Allowed forms are as follows:

--remote-dir user@host:/rdir # (old method)
--user user --remote-dir host:/rdir

 | Aspera Sync | 230

--user user --host host --remote-dir /rdir
--remote-dir host:/rdir # (uses $user)
--host host --remote-dir /rdir # (uses $user)

The following means the same as the first three lines above:

 -r /rdir --user=user --host=host

For backward compatibility, -r A:/rdir for any single letter A is still taken as a Windows path,
not as --host A -r /rdir. To specify a one-letter host name A, use an explicit --host=A.

-I file, --include-from=file

Scan and include paths specified in the filter file. For more information, see Include and Exclude
Filtering Rules on page 237.

-i file, --private-key-path=file

Authenticate with the specified SSH private key file. For information on creating a key pair, see
Creating SSH Keys on page 258.

--ignore-delete

Do not copy removals to the peer. This option is used mostly with uni-directional syncs. In bi-
directional sync, a deletion on one side is ignored but the next time async is run, the file is
recopied from the other end. In continuous mode, the file is not recopied until either async is
restarted or the file is changed (touched).

--ignore-mode

Do not synchronize file permissions of the source to the destination. This argument is useful
when synchronizing from a Unix-like source to a Windows destination, which has different file
permission behavior than the Unix-like source ("read only" files cannot be deleted or modified on
Windows).

--include="pattern"

Include paths that match pattern. Wildcards, such as * and ?, are supported but rules containing
them must be in double quotes. For example, --include="*.jpg". For more information on
how to set include and exclude patterns, see Include and Exclude Filtering Rules on page 237.

-j, --preserve-gid

Preserve file owner's gid when synchronizing files between Unix-like operating systems. Requires
that async is running as root. Default: disabled.

-K direction, --direction=direction

Transfer in the specified direction. direction can be push, pull, or bidi (bi-directional).
Default: push.

-k type, --checksum=type

Calculate the specified checksum type. type can be sha1, md5, sha1-sparse, md5-sparse,
or none. A value of none is equivalent to a size check only and async will not detect a change in
timestamp. Default: sha1-sparse for local storage, none for object storage.

--keep-dir-local=dir

Move deleted files into dir. The directory must exist (it is not created by --create-dir), and
must be outside the synchronization directory (or excluded from the sync using --exclude or --
exclude-from), but on the same file system.

--keep-dir-remote=dir

Move the server's deleted files into dir. The directory must exist (it is not created by --create-
dir), and must be outside the synchronization directory (or excluded from the sync using --
exclude or --exclude-from), but on the same file system.

-l rate, --target-rate=rate

 | Aspera Sync | 231

Transfer no faster than the specified maximum transfer rate. rate is an integer with units of G/g, M/
m, K/k, or bps. Default: 10 Mbps.

--local-force-stat

Force the local Aspera Sync to retrieve file information even if no changes were detected by
scanning or file system notifications (equivalent to the behavior of Aspera Sync versions 3.8.1 and
older). This option incurs a performance cost at the expense of immediately detecting file changes.
See also --remote-force-stat.

--local-fs-threads=number

Use up to the specified number of threads to do file system operations on the local computer.
Default: 1. This option is particularly useful when the local Sync directory is in cloud storage or
mounted storage (NFS) where file system operations are slow. To set multiple threads for file
system operations on the remote computer, use --remote-fs-threads.

--local-mount-signature=signature file

Verify that the local file system is mounted by the existence of this file. This option increases the
time required to synchronize deletes. See also --remote-mount-signature.

-m rate, --min-rate=rate

Attempt to transfer no slower than the specified minimum transfer rate. rate is an integer with units
of G/g, M/m, K/k, or bps. Default: 200 Kbps.

-N pair, --name=pair

Assign a name for the synchronization session. The value can contain only ASCII alphanumeric,
hyphen, and underscore characters. This value is stored in the session cookie and can be used in
IBM Aspera Console to identify the transfer session.

Note: -N must precede all session options.

-n action, --symbolic-links=action

Handle symbolic links with the specified method, as allowed by the server. For more information on
symbolic link handling, see Symbolic Link Handling on page 122.

action can be:

copy - create or update the link at the destination (default). Not valid for Windows source or
destination.
skip - ignore the link altogether.
follow - treat the link as if it were the file or directory it points to, so that at the destination,
what was a link is now a copy of the file or directory. Functions as skip if source is Windows.

--no-preserve-root-attrs

Disable the preservation of attributes on the Aspera Sync root.

--no-scan

Never scan. Use this option in a continuous async session to synchronize only new files (files that
are added to the directory after the start of the async session) but not existing files. With --no-
scan, Aspera Sync relies entirely on file system notifications to detect changes. As a result, if a
directory is renamed after the async session starts, then the directory name is synchronized but
the contents are not (because Aspera Sync does not recognize that the files were "moved" to the
renamed directory). This option cannot be used with --scan-interval or one-time async
sessions.

-O port, --udp-port=port

Use the specified UDP port for FASP data transfer. Default: 33001.

-o policy, --overwrite=policy

 | Aspera Sync | 232

Overwrite files according to the specified policy, which can be always, older, or conflict.
Use with -K push and pull. Default: always for -K push and pull; conflict for -K
bidi.

Note: When syncing with object storage, only file size (--checksum=none) can be used to
compare files. Thus, using --overwrite=always only overwrites files whose sizes have
changed. If the content of a local file is different from a file with the same name in object storage
but the files are the same size, the file in object storage is not overwritten. To overwrite files in this
case, use --overwrite=older.

--overwrite=older is only accurate if the user also specifies --preserve-time (preserve
timestamps).

To resolve conflict and error situations in a uni-directional sync, “touch” the problem files on
the source and run async with --overwrite=always. This clears all conflict and error
states as the problem files are synchronized.

-P port, --tcp-port=port

Use the specified TCP port for SSH. port must be a valid numeric IP port. Default: 22.

--pending-max=N

Allow the maximum number of files that are pending transfer to be no more than the specified
number. This option acts as a buffer. Default: 2000.

--preserve-access-time

Preserve file access time from the source to the destination. Default: disabled.

--preserve-acls={native|metafile|none}

Preserve Access Control Lists (ACL) data for macOS, Windows, and AIX files. To preserve ACL
data for other operating systems, use --preserve-xattrs. See also --remote-preserve-
acls.

• native - Preserve attributes using the native capabilities of the file system. This mode is only
supported for Windows, macOS, and AIX. If the destination and source do not support the same
native ACL format, async reports and error and exits.

• metafile- Preserve file attributes in a separate file, named filename.aspera-
meta. For example, attributes for readme.txt are preserved in a second file named
readme.txt.aspera-meta. These metafiles are platform independent and can be copied
between hosts without loss of information. This mode is supported on all file systems.

• none - (Default) Do not preserve attributes. This mode is supported on all file systems.

Important Usage Information:

• This feature is only meaningful if both hosts are in a common security domain. If a SID (security
ID) in a source file does not exist at a destination, the synchronization proceeds but no ACL data
is saved and the log records that the ACL could not be applied.

• Both --preserve-acls and --remote-preserve-acls must be specified in order for
the target side of a pull to apply the ACLs.

• ACLs are not synchronized when only the ACL is modified, or when only the ACL and
filename are modified. ACLs are not preserved for directories.

• On Windows, the ACLs that are created for files that are transferred into user directories might
restrict file access to specific users. Ensure that the ACLs on the transfer-cache directory
(destination_pathsession_name) are generic enough to allow access to all users
who require it. For more information about the transfer-cache directory, see The Aspera Sync
Database on page 218.

--preserve-creation-time

Preserve file creation time from the source to the destination. Valid only on Windows computers.
Default: disabled.

 | Aspera Sync | 233

--preserve-modification-time

Preserve file modification time from the source to the destination. Default: disabled.

--preserve-time

Preserve file timestamps. This is equivalent to --preserve-modification-time for Unix-
based operating systems, and to --preserve-modification-time --preserve-
creation-time on Windows. Default: disabled. Same as -t.

--preserve-xattrs={native|metafile|none}

Preserve extended file attributes data (xattr). See also --remote-preserve-xattrs.

• native - Preserve attributes using the native capabilities of the file system. This mode is
supported only on macOS and Linux. If the destination and source do not support the same
native xattr format, async reports and error and exits. If the Linux user is not root, some
attributes such as system group might not be preserved.

• metafile- Preserve file attributes in a separate file, named filename.aspera-
meta. For example, attributes for readme.txt are preserved in a second file named
readme.txt.aspera-meta. These metafiles are platform independent and can be copied
between hosts without loss of information. This mode is supported on all file systems.

• none - (Default) Do not preserve attributes. This mode is supported on all file systems.

Important Usage Information:

• Xattr are not preserved for directories.
• If Aspera Sync is run by a regular user, only user-level attributes are preserved. If run as

superuser, all attributes are preserved.

--proxy proxy_url

Synchronize using the specified IBM Aspera Proxy address. The Proxy URL is specified with the
following syntax:

dnat[s]://proxy_username:proxy_password@proxy_ip_address[:port]

The default port for DNAT is 9091, and for DNATS is 9092. The Proxy password must be specified
or the synchronization fails to connect to the Proxy server.

-R rem_log_dir,--remote-logdir=rem_log_dir

Use the specified logging directory on the remote host. The directory is created if it does not already
exist. If <async_log_dir> is set in aspera.conf on the server, async initially logs to
rem_log_dir but is then redirected to the directory specified for <async_log_dir>.

Note: -R cannot be used if the transfer user is restricted to aspshell.

-r rdir, --remote-dir=rdir

Synchronize the specified directory on the remote host. rdir is [[user@]host:]path. If the target
is the remote directory, you can use--create-dir to create the remote directory if it does not
already exist.

CAUTION: If the source and target directories are both on the local host, do not
specify a target directory that is inside your source directory.

--remote-force-stat

Force the remote Aspera Sync to retrieve file information even if no changes were detected by
scanning or file system notifications (equivalent to the behavior of Aspera Sync versions 3.8.1 and
older). This option incurs a performance cost at the expense of immediately detecting file changes.
See also --local-force-stat.

--remote-fs-threads=number

Use up to the specified number of threads to do file system operations on the remote computer.
Default: 1. This option is particularly useful when the remote Sync directory is in cloud storage

 | Aspera Sync | 234

or mounted storage (NFS) where file system operations are slow. To set multiple threads for file
system operations on the local computer, use --local-fs-threads.

--remote-mount-signature=signature file

Verify that the remote file system is mounted by the existence of this file. This option increases the
time required to synchronize deletes.

--remote-preserve-acls={native|metafile|none}

Like --preserve-acls but used when ACLs are stored in a different format on the remote
computer. Defaults to the value of --preserve-acls.

Note: Both --preserve-acls and --remote-preserve-acls must be specified in order
for the target side of the pull to apply the ACLs.

--remote-preserve-xattrs={native|metafile|none}

Like --preserve-xattrs but used attributes are stored in a different format on the remote
computer. Defaults to the value of --preserve-xattrs.

--remote-scan-interval=duration

Set the scanning interval of the remote computer. See also --scan-interval.

--remote-scan-threads=N

Use the specified number of directory scanning threads on the remote computer. More threads
decrease the time it takes for async to scan the directory after the initial synchronization, and
increase the number of pending files. Default: 1. To specify the number of scanning threads on the
local computer, see --scan-threads.

--remove-after-transfer

Remove source files after they are successfully synchronized.

--scan-dir-rename

Enable the detection of renamed directories and files compared to the previous scan, based on
matching inodes. Enable the detection of renamed directories and files compared to the previous
scan, based on matching inodes. When a new directory is found on the source and its inode matches
that of a previously found directory, it is considered a "rename" and the target directory is renamed
accordingly. The source directory is scanned for content changes, and the target directory is updated
accordingly.

Usage note:

• This option can be used only on file systems with persistent inodes, and does not work if inodes
are volatile, as is the case with many network-mounted file systems.

--scan-file-rename

Enable the detection of renamed files compared to the previous scan, based on matching inodes.
If a new file is found and its inode and last-modified time matches that of a previously found file
that does not have multiple hardlinks, it is considered a "rename" and the remote file is renamed
accordingly.

Usage note:

• This option can be used only on file systems with persistent inodes, and does not work if inodes
are volatile, as is the case with many network-mounted file systems.

• If --scan-file-rename is used without --scan-dir-rename, a directory rename
causes async to create a new directory and rename its files individually.

--scan-interval=duration

Enable periodic scans during a continuous Aspera Sync (a session run with the -C option) on
the local host. duration is the interval between periodic scans and can be specified as DDd
HH:MM:SS.mmm or WWw DDd HHh MMm SSs XXms XXus. Leading zero fields can be
omitted. Spaces can be omitted. A plain number XX is interpreted as SSs (seconds).

 | Aspera Sync | 235

--scan-threads=N

Use the specified number of directory scanning threads on the local computer. More threads
decrease the time it takes for async to scan the directory after the initial synchronization, and
increase the number of pending files. Default: 1. To specify the number of scanning threads on the
remote computer, see --remote-scan-threads.

--sharing-retry-max=N

Retry synchronizations up to the specified maximum number after a sharing violation. The interval
between retries is the number of seconds specified by --cooloff. Default: 3.

--symbolic-links=action

See -n.

-t

Preserve file timestamps. Same as --preserve-time.

--tags=string

User-defined metadata tags in JSON format that can be used in transfer session reporting and
searches.

--tags64=string

User-defined metadata tags in JSON format and base64-encoded that can be used in transfer session
reporting and searches.

--transfer-threads=N[:size]

Use the specified number of dedicated transfer threads and optionally specify the file size at which
files are assigned groups of threads. The number of threads should not exceed the number of
available CPU cores (the lower value of the client and server computers). If no size is specified,
infinity is used as an upper bound.

For example, to use two transfer threads to transfer files smaller than or equal to 128 bytes and six
transfer threads for all other files (those larger than 128 bytes), use the following options:

--transfer-threads=2:128 --transfer-threads=6

-u, --preserve-uid

Preserve the file owner's uid when synchronizing files between Unix-like operating systems. async
must be run as root to use this option. Default: disabled.

--user=user

Authenticate the transfer with the specified username. With this option, the characters "@" and ":"
are not treated specially in the argument to -r or --remote-dir.

-W token_string, --token=token_string

Use the specified authorization token. The token type (sync-push, sync-pull, or sync-bidi) must
match the direction (push, pull, or bidi) of the requested transfer. The token path must match the
remote directory of the requested transfer. If an invalid token is provided, the requested transfer will
be denied.

-w pass, --pass=pass

Authenticate the transfer with the specified password.

--write-uid=uid

--write-gid=gid

Write files as the user uid or the group gid. uid and gid can be numeric, or by name. If by name, the
name is looked up on the host performing the write. Failure to set the uid or gid is logged, but is
not an error. The uid or gid is set after ascp completes and before moving the file from the staging
directory to the final location.

 | Aspera Sync | 236

--write-uid conflicts with --preserve-uid, and --write-gid conflicts with --
preserve-gid.

-X size, --rexmsg-size=size

Use the specified size (in bytes) for a retransmission request. Maximum: 1440.

-x, --reset

Clear the Aspera Sync database and rescan the synchronized directories and files to create a fresh
database. Default: off.

-Z mtu, --datagram-size=mtu

Use the specified datagram size. Value is an integer. Default: detected-path MTU.

Examples of Async Commands and Output
Examples of common Aspera Sync use cases and a description of async output.

Async Command Examples

1. Continuous synchronization of a daily archive of large files on a Windows computer to Linux computer,
preserving Windows ACLs, run as an async pull on the Linux computer:

$ async -L /sync/logs -N backup -d /sync/backup -r
 alligator@everglades.company.com:"C:\data\" -i /.ssh/lion_private_key
 -K pull --remote-scan-interval=4h --preserve-acls=metafile --remote-
preserve-acles=metafile -C --exclude-dirs-older-than=1w0d0h0m0s

Details:

• Logs are stored on the Linux computer in the specified location.
• The user, lion, authenticates with an SSH key using the -i option
• Because the files in the backup are large, remote-scan-interval is used to scan the Windows computer

every 4 hours, which forces an additional scan in case any notifications are missed.
• In order to preserve Windows ACLs in the backup, both preserve-acls=metafile and remote-

preserve-acls=metafile must be specified.
• Since the archive directory creates a new directory for each day, use exclude-dirs-older-

than=1w0d0h0m0s to avoid scanning directories that are no longer changing (older than a week).
2. High performance push synchronization of many (10,000s) of small files (<10 KB) between Windows

computers:

> async -L c:/logs:200 -q -N small-files -c none --pending-max=10000 --
preserve-acls=native --transfer-threads=4 -R c:/logs:200 -d c:/data/ -r
 bobcat@192.168.4.24:"C:\data\" -K push -l 500m

Details:

• Specifying the logging locations (-L and -R) is optional. Adding :200 to the end of the log directory value
allows the logs to reach 200 MB before being rotated.

• If the connection is secure, disabling encryption using -c none may boost performance.
• Increase the number of pending files from the default of 2000 using --pending-max=10000.
• The --preserve-acls=native option preserves Windows ACLs.
• Using more FASP threads to move the data can improve performance, set with --transfer-threads=4.

The number of threads should not exceed the number of CPU cores (the lower value of the client and server
computers).

• The user must enter the password at the prompt because it is not provided in the command. Aspera
recommends using SSH keys for authentication, but this is not required.

 | Aspera Sync | 237

3. Non-continuous bidirectional synchronization of directories containing a mix of large and small files in
which small files are synchronized using one thread and large files use another, run on a Linux computer to
a macOS computer:

$ async -L /sync/logs -q -N sync-2017-01-01 -d /images --
user=gazelle@company.com --host=10.4.25.10 -r Library/data/images
 -i /lion/.ssh/lion_private_key -R Library/sync/logs --transfer-
threads=2:100000 -K bidi

Details:

• Logs are saved in the specified locations on both computers.
• The user authenticates with an SSH key using the -i option.
• The user and host are specified as separate options, rather than as part of the destination folder, so that the

username with an @ can be used (@ is reserved in an -r argument for specifying the host).
• The async session uses two threads, one for files larger than 100 KB and one for files less than or equal to 100

KB, specified with the --transfer-threads option.
4. Non-continuous push synchronization through reverse IBM Aspera Proxy:

$ async -N pushproxy -d /images -r lion@10.0.0.1:/data/images --
proxy=dnats://gazelle:password@10.0.0.4 -K push

Details:

• The transfer username on the destination (10.0.0.1) is lion, the Proxy IP address is 10.0.0.4, and the Proxy
username is gazelle.

• The Proxy URL option must include the Proxy user's password.

Async Output Example

When async is run in interactive mode, the status of each file in the synchronized directory is displayed in a list
similar to the following:

/file1 SYNCHRONIZED
/file2 SYNCHRONIZED(exs)
/file3 SYNCHRONIZED(skp)
/file4 SYNCHRONIZED(del)

The status may be one of the following options:

• SYNCHRONIZED: file transferred
• SYNCHRONIZED(skp): file skipped
• SYNCHRONIZED(del): file deleted
• SYNCHRONIZED(ddp): dedup (duplicate files present)
• SYNCHRONIZED(exs): file exists
• SYNCHRONIZED(mov): file has changed (renamed, moved, or different attributes)

Include and Exclude Filtering Rules
Filtering rules can be specified in the async command line or in the client or server configuration (aspera.conf)
to include or exclude files and directories from Aspera Sync scanning and transfer. Rules in aspera.conf are
applied before rules specified in the command line.

Command Line Syntax

To specify an include or exclude rule on the command line, use:

--exclude="RULE"

--include="RULE"

 | Aspera Sync | 238

Where:

• RULE is a file or directory name, or a set of names expressed with UNIX glob patterns.
• Surround patterns that contain wildcards with double quotes to prevent filter patterns from being interpreted by the

command shell. Patterns that do not contain wildcards can also be in double quotes.

To read include and exclude rules from a file, use:

--exclude-from=FILE

--include-from=FILE

Where:

• FILE is a file that contains a set of file and directory names, or names expressed with UNIX glob patterns.

Basic usage

The filtering options can be intermixed and have the following behavior:

• Filtering rules are applied in the order they appear on the command line. If filtering rules are configured in
aspera.conf, they are applied before the rules on the command line.

• Filtering is a process of exclusion, and include rules override exclude rules that follow them. Include rules cannot
add back files that are excluded by a preceding exclude rule.

• Unlike Ascp, include rules imply exclude all file and directory names that do not match.
• Filtering operates only on the set of files and directories in the transfer list. An include rule cannot add files or

directories that are not already part of the transfer list.
• Directories and files are visited in strict depth order.

Note: When a directory is excluded, directories and files in it are also excluded and are not compared to any
following rules. For example, with the command-line options --exclude="/images/" --include="/
images/icons/", the directory /images/icons/ is not included or considered because /images/ was
already excluded.

• In filtering rules, "\" is exclusively a quoting operator and "/" is the only path separator recognized.
• Case always matters, even when the scanned file system does not enforce such a distinction. For example, on

Windows FAT or NTFS file systems and macOS HPFS+, a file system search for "DEBUG" returns files "Debug"
and "debug". In contrast, async filter rules use exact comparison. To match both "Debug" and "debug" in a
async filter, use "[Dd]ebug".

Example Expected Behavior

--include="rule1" --
include="rule2"

Transfer all files and directories with names that match rule1 or rule2.
All others are excluded.

--include="rule1" --
exclude="rule2"

Transfer all files and directories with names that match rule1, as well as
all other files and directories except those with names that match rule2.

--exclude="rule1" --
include="rule2"

Do not transfer files or directories with names that match rule1; of the
rest, transfer only those with names that match rule2.

--exclude-from=FILE1 --
include-from=FILE2

Read filter specifications from FILE1 and FILE2. Files and directories
with names that match rules in FILE1 are excluded by default, unless
the rule specifies otherwise. Files and directories with names that
match rules in FILE2 are included by default, unless the rule specifies
otherwise.

Sync Handling New and Renamed Files

 | Aspera Sync | 239

Excluded new files are invisible to async. Files that have been synchronized continue to be tracked even when they
have, or are changed to, a name that is now excluded. For example, when run with --exclude FILE3:

Local event Effect on peer (previously
synchronized)

Clean start

mv FILE4 FILE3 mv FILE4 FILE3 rm FILE4

rm FILE3 rm FILE3 (ignored)

cp FILE4 FILE3 cp FILE4 FILE3 (ignored)

mv FILE3 FILE4 mv FILE3 FILE4 new file FILE4

Specifying Rules in a File

Rules can be specified in a text file, with each rule on a separate line.

• Rules in the file are applied to the file set as if from a series of --include A --exclude B options.
• Leading white spaces, blank lines and comment lines (# comment) are ignored.
• Rules default to include for --include-from or exclude for --exclude-from rules.

• To force include in an --exclude-from file, start a line with + (plus and a space). For example, +
image* is equivalent to --include="image*".

• To force exclude in an --include-from file, start a line with - (minus and a space). For example, -
image* is equivalent to --exclude="image*".

• A file or directory name that does not match any rule is still tracked, as if by a final "+ *" and "+ .*".

Note: To reliably exclude all unmatched files, add two final rules: "- *" and "- .*".
• Rules in files can point to other files:

• To name a file to read for more rules, enter . FILE (dot-space-filepath). This syntax does not set a default
filter action (include or exclude). In this case, each line in the rule file must specify if it is an include or
exclude rule.

• Lines that start with .+ (dot plus and space), such as .+ F, are equivalent to --include-from=F.
• Lines that start with .- (dot minus and space), such as .+ G, are equivalent to --exclude-from=G.

Specifying Rules in aspera.conf

Rules can be specified in aspera.conf and applied to sessions run by a specific user or all users, as they are for
ascp sessions. Rules in aspera.conf are applied first, then any command line filters are applied.

CAUTION: Rules that are set in aspera.conf apply to both ascp and async sessions. If you do
not want async filtering rules to apply to ascp sessions, set the rules for a specific user and use that
user for async sessions. If you notice your async sessions are being filtered in unexpected ways,
search aspera.conf for <filters> to determine what rules have been configured. You can find
aspera.conf in the following location:

/opt/aspera/etc/aspera.conf

Rule Syntax

• To specify an inclusion, start the filter pattern with '+ ' (+ and a whitespace, such as + *.jpg).
• To specify an exclusion, start the filter pattern with '- ' (- and a whitespace, such as - *.png).

Set Filters in aspera.conf

To set filters for a specific user, run the following asconfigurator command:

 asconfigurator -x
 "set_user_data;user_name,username;file_filters,|filter1[|filter2]"

 | Aspera Sync | 240

To set filters for all users, run the following:

 asconfigurator -x "set_node_data;file_filters,|filter1[|filter2]"

The separator "|" is not required if only one filter is set.

Rule Patterns

Rules use standard globbing syntax and globbing extensions.

Standard Globbing Syntax

/ The only recognized path separator.

\ Quotes any character literally, including itself. \ is exclusively a quoting operator, not
a path separator.

* Matches zero or more characters, except "/" or the . in "/.".

? Matches any single character, except "/" or the . in "/.".

[…] Matches exactly one of a set of characters, except "/" or the . in "/.".

[^…] When ^ is the first character, matches exactly one character not in the set.

[!…] When ! is the first character, matches exactly one character not in the set.

[x-x] Matches exactly one of a range of characters.

[:xxxxx:] For details about this type of wildcard, see any POSIX-standard guide to globbing.

Examples of Standard Globbing

Wildcard Example Matches Does Not Match

/ abc/def/xyz abc/def/xyz abc/def

\ abc\? abc? abc\? abc/D abcD

* abc*f abcdef abc.f abc/f abcefg

? abc?? abcde abc.z abcdef abc/d abc/.

[…] [abc]def adef cdef abcdef ade

[^…] [^abc]def zdef .def 2def bdef /def /.def

[!…] [!abc]def zdef .def 2def cdef /def /.def

[:xxxxx:] [[:lower:]]def cdef ydef Adef 2def .def

Globbing Extensions

Globbing Extensions Description

no / or * at end of rule Matches only files.

/ at end of rule Matches only directories.

* or /** at end of rule Matches both directories and files.

/** Like * except that it also matches the / character.

 | Aspera Sync | 241

Globbing Extensions Description

/ at start of rule Matches from the system's root directory (absolute path) only; that is, the entire string
must be matched. Note: The / means the system's root, not the docroot, and not from
the top level specified for the transfer set.

Examples of Globbing Extensions

Globbing Extensions Example Matches Does Not Match

/** abc/**/def abc/def abc/x/def abc/.wxy/
def abc/wxy/tuv/def

abc/xyz/def/ zabc/wxy/def

* at end of rule abc* abc/file abc/dir

/** at end of rule abc/** abc/.file abc/dir abc/
wxy/.dir abc/wxy/tuv/file

abc/

/ at end of rule abc/*/ abc/dir abc/file

no / at end of rule file file dir

/ at start of rule /abc/def /abc/def .../abc/def

Filtering Examples
Filtering examples that demonstrate the effects of adding more filter rules to the command and show how to format a
filter rule file.

Note: You can synchronize Windows, Linux, macOS, and other Unix-based endpoints and servers, but must take
care with path separators. The path separator "/" is supported on Windows and other platforms. The path separator "\"
is platform-agnostic only for the options -d/r/L/R/B/b and --keep-dir-local/remote. In Aspera Sync
filtering rules, however, "\" is exclusively a quoting operator and "/" is the only path separator recognized.

1. Include files under top-level directories Raw and Jpg. Exclude all others.

 async ... --include='/Raw/**' --include='/Jpg/**' --exclude='*' \
--exclude='.*' ...

2. Same as Example 1, except also include directories starting with ".", at any level.

 async ... --include='.*/' --include='/Raw/**' --include='/Jpg/**' \
--exclude='*' --exclude='.*' ...

3. Same as Example 2, except exclude regular files ending in "~" or ".thm".

 async ... --include='.*/' --exclude='.*~' --exclude='*~' \
--exclude='.*.thm' --exclude='*.thm' --include='/Raw/**' \
--include='/Jpg/**' --exclude='*' --exclude='.*' ...

4. Same as Example 3, except include only certain directories under Jpg.

 async ... --exclude='.*~' --exclude='*~' --exclude='.*.thm' \
--exclude='*.thm' --include='.*/' --include '/Raw/**' \
--include='/Jpg/Big/**' --include='/Jpg/Med/**' \
--exclude='*' --exclude='.*' ...

The long sequence in Example 4 can also be represented as a file:

 async ... --exclude-from=- <<EOF
no regular files with ~ suffix, dot or otherwise:
 .*~

 | Aspera Sync | 242

 *~
similarly for ".thm" suffix files:
 .*.thm
 *.thm
include directories starting with "."
 + .*/
include everything else found under top-level Raw :
 + /Raw/**
and under Big/ and Med/ in Jpg:
 + /Jpg/Big/**
 + /Jpg/Med/**
but nothing else:
 *
 .*
EOF

Bidirectional Example
Bidirectional synchronization syntax is similar to push or pull async sessions, as show in the following example.

Note: You can synchronize Windows, Linux, macOS, and other Unix-based endpoints and servers, but must take
care with path separators. The path separator "/" is supported on Windows and other platforms. The path separator "\"
is platform-agnostic only for the options -d/r/L/R/B/b and --keep-dir-local/remote. In Aspera Sync
filtering rules, however, "\" is exclusively a quoting operator and "/" is the only path separator recognized.

Example Options:

• Pair name = "asyncTwoWay"
• Local directory is /fio/S
• Remote directory and login is admin@192.168.200.218:d:/mnt/fio/S (Windows computer)
• Password is v00d00
• Target rate = 100,000 Kbps or 100 Mbps
• Transfer policy = fair
• Read-block size = 1048576 or 1MB
• Write-block size = 1048576 or 1MB
• Continuous transfer
• Bidirectional transfer

Example Command:

$ async -N asyncTwoWay -d /fio/S -r admin@192.168.200.218:d:/mnt/fio/S -w
 v00d00 -l 100M -a fair -g 1M -G 1M -C -K BIDI

Example Output:

/ SYNCHRONIZED
/a SYNCHRONIZED
/b SYNCHRONIZED
/c SYNCHRONIZED
/DIR1 SYNCHRONIZED
/A1 SYNCHRONIZED
/DIR2 SYNCHRONIZED
/A2 SYNCHRONIZED
/REMOTE_DIR1 SYNCHRONIZED
/REMOTE_DIR2 SYNCHRONIZED
/REMOTE_DIR1
 SYNCHRONIZED(del)
/DIR1/a SYNCHRONIZED
/DIR1/b SYNCHRONIZED
/DIR1/c SYNCHRONIZED

 | Aspera Sync | 243

[idle] Found/synchronized/Pending/Error/Conflict=9/9/0/0/0

Synchronizing with AWS S3 Storage
Aspera Sync can be used to synchronize files when the source or destination is AWS S3 Cloud Object Storage.
Each endpoint (HST Server) of the async session must be configured to support Aspera Sync and the async must
include certain file system-related options.

Capabilities:

• Non-continuous PUSH, PULL, and BIDI synchronization between a local disk and AWS S3, as well as between
S3 buckets.

• Continuous PULL and BIDI when S3 is the content source; requires the --scan-interval option.

Requirements:

• An IBM Aspera On Demand instance in AWS S3, or HST Server for Linux or Windows version 3.7.3 or later
installed on a virtual machine instance in AWS with Trapd enabled. For instructions on setting up a HST Server
in the cloud, see the High-Speed Transfer Server Admin Guide for Linux: Enabling AWS EC2/AWS S3 Using the
Command Line.

• The S3 instance must have an On Demand entitlement and a Aspera Sync-enabled license.
• The async binary must be installed on both the source and destination server.
• Configure the S3 instance, or both S3 endpoints if you are running an S3-to-S3 synchronization, as described in

the following steps.

1. SSH into your instance as root by running the following command.

The command is for Linux but also works for Mac. Windows users must use an SSH tool, such as PuTTy.

ssh -i identity_file -p 33001 ec2-user@ec2_host_ip

2. Elevate to root privileges by running the following command:

su -

3. Set an S3 docroot for the system account user that will be used to run async.

asconfigurator -x "set_user_data;user_name,username;absolute,s3://
s3.amazonaws.com/bucketname"

If you are not using IAM roles, then you must also specify the S3 credentials in your docroot:

s3://access_id:secret_key@s3.amazonaws.com/my_bucket

By setting the docroot for the system user, the account becomes an Aspera transfer user.

4. Set database and log directories for async.

These directories must be located in /mnt/ephemeral/data. The /mnt/ephemeral/ directory is no-
cost ephemeral storage that is associated with your instance. Aspera recommends creating a directory to use
that is named for the transfer user, and giving the transfer user write access. For example, if the transfer user is
ec2_user, run the following commands to create the directory /mnt/ephemeral/data/ec2_user, create
the database and log subdirectories, give ec2_user write access, and set the directories as the location for the
database and logs:

mkdir /mnt/ephemeral/data/ec2_user
mkdir /mnt/ephemeral/data/ec2_user/db
mkdir /mnt/ephemeral/data/ec2_user/log
chown -R ec2_user /mnt/ephemeral/data/ec2_user
asconfigurator -x "set_node_data;async_db_dir,/mnt/ephemeral/data/
ec2_user/db"

https://downloads.asperasoft.com/en/documentation/4
https://downloads.asperasoft.com/en/documentation/4

 | Aspera Sync | 244

asconfigurator -x "set_node_data;async_log_dir,/mnt/ephemeral/data/
ec2_user/log"

Examples of Sync to or from S3

Note: If the client is on the cloud storage host, the following options are required:

• The log directory and local database directory must be specified by using the -L and -b options.
• The --apply-local-docroot option must be used in order to transfer content into the object storage, rather

than the local disk.

The following examples include the optional arguments --transfer-threads, --local-fs-threads, and
--remote-fs-threads, which improve performance when one or both endpoints are in cloud storage.

One-time push from local disk to S3:

A one-time (non-continuous) push that is run from a local disk to an S3 bucket using SSH keys (for more information
on using SSH keys, see Creating SSH Keys on page 258), where ec2_user is the transfer user:

 async -N sync-to-s3 -d /data/data-2017-01 -r ec2_user@192.0.4.24:/data
 -i bobcat.sshprivate_key -K push -B /mnt/ephemeral/data/db --transfer-
threads=8 --remote-fs-threads=16

One-time bidi from S3 to local disk:

A one-time bidirectional sync that is run from the S3 client to a local disk:

async -L /mnt/ephemeral/data/log --apply-local-docroot -N bidi_london -d /
data -r bear@192.0.12.442:/data -K bidi -b /mnt/ephemeral/data/db -B /async/
log --transfer-threads=8 --local-fs-threads=16

One-time pull from S3 to S3:

A one-time pull by ec2_user from s3host to /data/2017 in the client S3 storage:

async -L /mnt/ephemeral/data/log --apply-local-docroot -N s3sync -d /
data/2017 -r ec2_user@s3host:/data/2017-01 -K pull -b /tmp --transfer-
threads=8 --local-fs-threads=16 --remote-fs-threads=16

Writing Custom Metadata for Objects in Object Storage
Files that are uploaded to metadata-compatible storage (S3, Google Cloud, and Azure) can have custom metadata
written with them by using the --tags or --tags64 option. The argument is a JSON payload that specifies the
metadata and that is base64 encoded if it is used as an argument for --tags64.

Metadata Behavior

• All objects that are uploaded in a session have the same metadata.
• If an upload resumes, the metadata of the original transfer is used.
• Multi-session transfers must specify the same metadata.
• Metadata are not retrieved when downloading objects; use the REST API associated with the storage.
• Transfers to object storages that do not support metadata (such as HDFS and Azure Files) fail if metadata is

specified.

Specifying Metadata in JSON

The JSON payload has the general syntax of key-value pairs in a "cloud-metadata" section:

{
 "aspera": {
 "cloud-metadata": [
 {"key1":"value1"},
 {"key2":"value2"},

 | Aspera Sync | 245

 ...
] } }

Restrictions on key-value pairs:

• key cannot be ctime, mtime, or atime. These keys are reserved and the transfer fails if they are used.
• key might be case-sensitive, depending on the destination storage type.
• The key-value pair must be less than 1024 characters.

Sample Async Session with Metadata

One-time push:

 async -L /async_log -N S3_sync -i /bear/.ssh/id_rsa --tags='{"aspera":
{"cloud-metadata":[{"location":"skye"}]}}' -K push -B /mnt/ephemeral/data/db
 -d /clips -r ec2_user@192.0.04.24:/project

Aspera Sync with Basic Token Authorization
Aspera nodes that require access key authentication, such as IBM Aspera on Cloud transfer service (AoCts), can be
used as synchronization endpoints by configuring the async database on the node and authenticating the async
session with a basic token. A basic token requires a docroot on the server and allows access to all files in the docroot.

1. On the client, set a location for the Aspera Sync snapshot database by running the following command:

 asconfigurator -x "set_node_data;async_db_dir,filepath"

2. On the server, set a docroot for the transfer user.

Log in or SSH into the server and run the following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,filepath"

3. Create an Aspera access key.

For AoCts, see https://ibm.ibmaspera.com/helpcenter/transfer-service/managing-access-keys/transfer-service-
access-keys.

4. Create the basic token from the access key ID and secret.

Run the following command to encode the access key ID and secret in base64.

 echo -n access_key_id:secret | base64

The basic token looks similar to the following:

ZGlEZXVGTGNwRzlJWWRzdnhqMFNDcTRtT29oTkpUS3ZwNVEyblJXakRnSUE6YXNwZXJh

If the basic token breaks across lines in the output, rerun the command using the -w0 option to remove the line
break. For example:

 echo -n diDeuFLcpG9IYdsvxj0SCq4mOohNJTKvp5Q2nRWjDgIA:aspera | base64 -w0

5. Run a synchronization, using the basic token.

Run async with the -W option or set the ASPERA_SCP_TOKEN environment variable. For example,

 async -N sync -d /images -r lion@10.0.0.1:/data/images -K push -W "Basic
 ZGlEZXVGTGNwRzlJWWRzdnhqMFNDcTRtT29oTkpUS3ZwNVEyblJXakRnSUE6YXNwZXJh"

https://ibm.ibmaspera.com/helpcenter/transfer-service/managing-access-keys/transfer-service-access-keys
https://ibm.ibmaspera.com/helpcenter/transfer-service/managing-access-keys/transfer-service-access-keys

 | Aspera Sync | 246

Using the Aspera Watch Service with Aspera Sync
Aspera Sync can use asperawatchd for more efficient file system change detection, particularly for file systems with
many files.

Starting Aspera Watch Services and Creating Watches
The Aspera Watch Service (asperawatchd) is a file system change detection and snapshot service that is
optimized for speed, scale, and distributed sources. On file systems that have file system notifications, changes in
source file systems (new files and directories, deleted items, and renames) are detected immediately, eliminating
the need to scan the file system. On file systems without file notifications, such as object storage, Solaris, AIX, and
Isilon, file system scans are automatically triggered.

The Aspera Watch Service can be used on any local or shared (CIFS, NFS) host. However, when watching mounted
shared storage and the change originates from a remote server, the Watch Service does not receive file notifications.
In such cases, set <scan_period> in aspera.conf to frequent scans, such as 1 minute. See the following steps
for instructions.

When used in conjunction with ascp commands, the Aspera Watch Service enables fast detection and transfer of
new and deleted items. For more information on using watches with ascp, see Transferring and Deleting Files with
the Aspera Watch Service on page 206.

To start the Aspera Watch Service and subscribe to (create) a watch:

1. Configure a docroot or restriction for the user.

Docroots and path restrictions limit the area of a file system or object storage to which the user has access. Users
can create Watch Folders and Watch services on files or objects only within their docroot or restriction.

Note: Users can have a docroot or restriction, but not both or Watch Folder creation fails.

To set up a docroot from the command line, run the following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

Restrictions must be set from the command line:

 asconfigurator -x
 "set_user_data;user_name,username;file_restriction,|path"

The restriction path format depends on the type of storage. In the following examples, the restriction allows access
to the entire storage; specify a bucket or path to limit access.

Storage Type Format Example

local storage For Unix-like OS:

• specific folder: file:////folder/*
• drive root: file:////*

For Windows OS:

• specific folder: file:///c%3A/folder/*
• drive root: file:///c*

Amazon S3 and IBM Cloud Object Storage - S3 s3://*

Azure azu://*

Azure Files azure-files://*

Azure Data Lake Storage adl://*

 | Aspera Sync | 247

Storage Type Format Example

Alibaba Cloud oss://*

Google Cloud gs://*

HDFS hdfs://*

With a docroot or restriction set up, the user is now an Aspera transfer user. Restart asperanoded to activate your
change:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

2. Ensure the user has permissions to write to the default log directory if no directory is specified.

For more information about configuring log directories, seeWatch Service Configuration on page 203.

3. Configure Watch Service settings.

Though the default values are already optimized for most users, you can also configure the snapshot database,
snapshot frequency, and logging. For instructions, see Watch Service Configuration on page 203.

4. Start a Watch Service under the user.

The following command adds the Watch Service run under the user to the Aspera Run Service database:

 asperawatchd --user username [options]

5. Verify that the Watch Service daemon is running under the user.

Use the aswatchadmin utility to retrieve a list of running daemons. Daemons are named for the user who runs
the service. For example, if you started a Watch Service under , you should see the daemon listed when you run
the following command:

 aswatchadmin query-daemons
[aswatchadmin query-daemons] Found a single daemon:

6. Create a watch.

A watch is a path that is watched by the Aspera Watch Service. To create a watch, users subscribe to a Watch
Service and specify the path to watch. run the following command, where daemon is the username used to start
the asperawatchd service and filepath is the directory to watch:

 aswatchadmin subscribe daemon filepath

When you create a new subscription, you can also set watch-specific logging, database, scan period, and
expiration period, and override aspera.conf settings.

Note: The default scan period is 30 minutes. If you are watching a file system that does not support file system
notifications (such as object storage, mounted storage (NFS), Solaris, AIX, and Isilon), Aspera recommends
setting a more frequent scan to detect file system changes quicker.

For more information on using these options, see Managing Watch Subscriptions on page 205 or run:

 aswatchadmin subscribe -h

Note: The default expiration for watches is 24 hours. If a watch subscription expires before the user resubscribes
to it, a new subscription must be created.

Starting the Aspera Watch Service
Aspera Sync can be configured to use asperawatchd for fast synchronization of very large numbers of files without
scanning the directory. Aspera Sync can push files from a local directory, pull files from a remote directory, or create

 | Aspera Sync | 248

a bi-directional session between two directories (as long as asperawatchd is properly configured to monitor both
directories).

To push files to a remote server using Aspera Watch Service, configure asperawatchd on the local host. The
remote server does not need to be configured. For instructions on starting asperawatchd for a push Aspera Sync, see
Starting Aspera Watch Services and Creating Watches on page 201.

To pull files from a remote host, configure asperawatchd on the remote host. See the following steps for
configuration instructions. The local host does not need to be configured.

1. On the remote server, configure asperawatchd database storage.

If you set default database storage, Aspera Sync uses asperawatchd for all pull requests to the server, whereas if
you set database storage for a specific user then asperawatchd is used only for pull requests by that user.

To configure the Watch Service database as the default, run the following command:

asconfigurator -x
 "set_node_data;async_watchd,redis:hostname:31415[:domain]"

To configure the database storage for a specific user, run the following command:

asconfigurator -x
 "set_user_data;user_name,username;async_watchd,redis:hostname:31415[:domain]"

2. On the remote server, set up asperawatchd.

For instructions, see Starting Aspera Watch Services and Creating Watches on page 201.

Watch Service Configuration
The Aspera Watch Service configuration in the <server> section of aspera.conf includes the snapshot
database, snapshot frequency, and logging:

<server>
 <rund>...</rund>
 <watch>
 <log_level>log</log_level>
 <log_directory>AS_NULL</log_directory>
 <db_spec>redis:host:31415:domain</db_spec>
 <watchd>
 <max_directories>1000000</max_directories>
 <max_snapshots>10000</max_snapshots>
 <snapshot_min_interval>3s</snapshot_min_interval>
 <snapshot_min_changes>100</snapshot_min_changes>
 <scan_threads>16</scan_threads>
 </watchd>
 <watchfolderd>...</watchfolderd>
 </watch>
</server>

To view current settings without opening aspera.conf, run the following command and look for settings that start
with watch and watchd:

 asuserdata -a

Note: Logging and database settings apply to both the Watch Service and Watch Folders services.

Configuring Watch Service Settings

Configure the Watch Service by using asconfigurator commands with this general syntax:

 asconfigurator -x "set_server_data;option,value"

 | Aspera Sync | 249

Options and values are described in the following table.

Configuration Options and Values

asconfigurator option
aspera.conf setting

Description Default

watch_log_dir
<log_dir>

Log to the specified directory. This
setting applies to both the Watch
Service and Watch Folders services.

The Aspera logging file (Log Files
on page 330).

watch_log_level
<log_level>

The level of detail for Aspera Watch
Service logging. This setting applies
to both the Watch Service and Watch
Folders services. Valid values are
log, dbg1, and dbg2.

log

watch_db_spec
<db_spec>

Use the specified Redis database,
which is defined with the syntax
redis:ip_address:port[:domain].
This setting applies to both the
Watch Service and Watch Folders
services.

redis:127.0.0.1:31415

watchd_max_directories
<max_directories>

The maximum number of directories
that can be watched (combined
across all watches).

This setting is used only on Linux
machines to overwrite the system
value /proc/sys/fs/inotify/
max_user_watches. To
overwrite the system value with the
aspera.conf value, run the setup
procedure in the admin tool:

aswatchadmin setup

1000000

watchd_max_snapshots
<max_snapshots>

The number of snapshots that are
stored in the database before the
oldest are overwritten.

10000

watchd_snapshot_min_interval
<snapshot_min_interval>

The maximum amount of time
between snapshots. If this period
passes without the minimum number
of changes to trigger a snapshot, a
new snapshot is taken.

3s

watchd_snapshot_min_changes
<snapshot_min_changes>

The minimum number of changes
that trigger a snapshot. If this number
is reached before the snapshot
minimum interval passes, a new
snapshot is taken.

100

watchd_scan_threads
<scan_threads>

The number of threads to use to scan
the watched folder. More threads
increase the speed of the scan,
particularly for folders with large

16

 | Aspera Sync | 250

asconfigurator option
aspera.conf setting

Description Default

numbers of files, but require more of
your computer's resources.

Aspera Sync with Aspera Watch Service Session Examples
Examples of async commands for push, pull, and bidi sessions that use asperawatchd to identify files to transfer.

Push Example

Configure and start asperawatchd on the local host to push files with asperawatchd (see Starting Aspera Watch
Services and Creating Watches on page 201).

To push files, start a Aspera Sync session with the --watchd datastore:host:port[:domain] option. For
example:

async --watchd redis:localhost:31415: -N watch_push -d /data/D1 -r
 adminuser@10.0.0.1:/data/R1

Pull Example

Configure and start asperawatchd on the remote host to pull files with asperawatchd (see Starting Aspera Watch
Services and Creating Watches on page 201).

Aspera Sync reads the remote host's aspera.conf file to determine whether or not to use asperawatchd for the
session. To pull files, start a Aspera Sync session with the -K pull option. For example:

async -N watch_pull -d /data/D1 -r adminuser@10.0.0.1:/data/R11 -K pull

Bidirectional Example

Configure and start asperawatchd on the local and remote hosts to start a bidirectional session with asperawatchd (see
Starting Aspera Watch Services and Creating Watches on page 201).

To synchronize bidirectionally, start a Aspera Sync session with the --watchd
datastore:host:port:domain option and the -K BIDI option. For example:

async --watchd redis:localhost:31415: -N watch_session -d /data/D1 -r
 adminuser@10.0.0.1:/data/R11 -K BIDI

Remote from ascp Example

If you are using CIFS or NFS mounted storage, you must configure and run asperawatchd service on the host running
the NFS server, but neither the local host nor the remote host need to be configured.

On the NFS server, you must also set the Redis database to a non-loopback address by configuring Redis with a
modified configuration file including the correct port and host address bindings. For example, if your host address is
"10.54.44.194":

Accept connections on the specified port, default is 6379.
If port 0 is specified Redis will not listen on a TCP socket.
port 31415

If you want you can bind a single interface, if the bind option is not
specified all the interfaces will listen for incoming connections.
#

 | Aspera Sync | 251

bind 10.54.44.194

Save your configuration file and then run the asperaredisd service with the location of your configuration file.

 asperaredisd /filepath/redis_configuration.conf.

Point asperawatchd to the new Redis location by running the following command on your server:

 asconfigurator -x
 "set_node_data;watchfolderd_db_spec,redis:redis_host:redis_port:domain"

For example,

 asconfigurator -x
 "set_node_data;watchfolderd_db_spec,redis:10.54.44.194:31415:"

Restart asperawatchd.

 asperawatchd --user username

You can now start a Aspera Sync session from any client mounting NFS storage from that NFS server.

Important: The path of your mounted directory must match the path of the directory on the NFS server. For
example, if the directory is found at /data/D1 on the NFS server, you must mount it at /data/D1.

Start a Aspera Sync session with the local directory (-d) pointing to the mounted storage and the --watchd option
pointing to the remote Redis monitored by asperawatchd. For example:

async --watchd redis:10.54.44.194:31415 -N watch_remote -d /data/D1 -r
 adminuser@10.0.0.1:/data/R11 -K BIDI

In this example, the client on Host A starts the Aspera Sync session. The asperawatchd service on Host B
(10.54.44.194) scans the /data/D1 directory mounted by Host A and passes the snapshot to Aspera Sync. Aspera
Sync transfers the relevant files from the mounted storage to the target directory remote Host C (10.0.0.1). In this
example, only Host B needs to be configured for asperawatchd.

Note: These examples are all one-time sessions, but you can run any of these sessions in continuous mode (if the
source machine is Windows or Linux) by using the -C option. In continuous mode, any changes you make to a
monitored directory are detected by Introduction to Watch Folders and the Aspera Watch Service on page 149.
Changes are propagated through Aspera Sync.

Aspera Sync Monitoring and Logging
Admins can use the asyncadmin command-line tool to monitor async sessions and snapshots. Aspera Sync logs
offer detailed information about session events, such as transfers and conflicts.

asyncadmin Command-Line Options
Administrators can use the asyncadmin tool to view the status of the current synchronization, as well as the
latest snapshot. This includes the number of files in each state and any changes that might be incomplete on the
remote endpoint. asyncadmin also offers troubleshooting options for deleting file records from a snapshot by path
globbing match or filename. Learn more about asyncadmin definitions, allowable values, and defaults.

General asyncadmin usage:

 asyncadmin -d path [-N name][options]

The -N name option is required if multiple Aspera Sync sessions are running; you must specify the name of the
session to which the asyncadmin command should apply.

 | Aspera Sync | 252

Note: When records are deleted using the -M or -E options, Aspera Sync recalculates file counters for the entire
database. This can take a while, depending on the size of the database.

Session Options
-A

Display the asyncadmin version.

-b path, --local-db-dir=path

Specify the local database directory. The default location is the local Aspera Sync directory.

-C, --clean

Delete problem records (records with statuses of CONF, PCONF, and ERR).

-d path, --local-dir=path

Specify the local Aspera Sync directory.

-E number, --erase=number

Delete the specified file record by number.

-F, --force

Allow changes while database is in use.

-f, --file-info

Report the status of all files.

CAUTION: The use of this option is not recommended on Windows, as it can cause
the database to lock and async to fail. An alternative is to use the -t option.

-h, --help

Display the asyncadmin command-line option help.

-j, --journal

List the changes that might be incomplete remotely.

-l, --list

List the snapshot databases found in the database directory.

-M pattern, --match=pattern

Delete file records that have paths that match the specified pattern (path globbing).

-m, --meta

Report metadata.

-N name, --name=name

Select a source-destination pair from the snapshot database by name.

-O, --compact

Compact the database file.

-p, --pause

Pause when displaying a large amount of file data (for example, -f).

-q, --quiet

Display only the requested information. Use with -f / --file-info to disable abbreviating file
names in the output.

-s, --summary

Report the number of files in each state. When -s is used alone, a brief summary from the async
database's counters table is reported back (same as the cached counters as in the -t option).

 | Aspera Sync | 253

CAUTION: The use of this option is not recommended on Windows, as it can cause
the database to lock and async to fail. An alternative is to use the -t option below.

-s -v

When -s is used with -v, every record in the async database is counted.

Important: This should only be used when async is not running.

-T, --terminate

Shut down async if it is running. This option cannot be used if the storage style set for
<async_db_spec> is LMS and outputs an error message.

-t num, --tail=num

Report status of last num files.

Note: Use of this option on Windows as an alternative to the -f and -s options above.

--touch=path

Change the recursive mtime of the node and all its parents to current time if they are older. This
option is only applied if async has been run using the --exclude-dirs-older-than
option.

-v, --verbose

Increase the verbosity of summary (-s) or file info (-f).

-x, --init

Delete all file system snapshot records.

Logging
By default, Aspera Sync logs all file system synchronization events and transfers, including any errors that were
encountered by synchronizing hosts, to syslog. You can set the logging location on both endpoints when you start
async.

Important: If you attempt to synchronize a directory without the proper read/write permissions, the directory and
files it contains are not marked with an ERROR flag in the file directory status output. However, the error will be
noted in the log file.

Troubleshooting Aspera Sync
Many Aspera Sync problems can be corrected by using required options, ensuring users have necessary permissions
to access files, and configuring the endpoints as required.

Troubleshooting General Aspera Sync Errors
Fixes for common Aspera Sync issues.

The Aspera Sync client displays failure to start sync error

When the async binary on the remote computer cannot initialize, the async client gets a generic error similar to the
following:

Failed to start sync session

Causes: Possible causes include the following:

• async binary doesn't exist (or is not in the path and sshd cannot find/execute it).
• async binary cannot be run.
• async binary cannot initialize properly (such as when the system is out of memory or socket resources).
• async binary cannot create its log files, if specified with -R (bad path, bad permissions).

 | Aspera Sync | 254

Solutions:

• Confirm that the async binary is present. Look in the following location:

• Confirm that the Aspera license shows that Aspera Sync is enabled. Run the following command and look for
sync2 in the list of enabled settings:

 ascp -A

• If the system is under-resourced, increase the timeout allowed between the start of an async session and the
FASP transfers associated with it by running the following command. In this example, the timeout is increased to
10 minutes (600 seconds):

 asconfigurator -x "set_node_data;async_connection_timeout_sec,600"

• Confirm that the path in the argument for -R is valid and that the Aspera Sync user has write permissions to the
directory.

Never-ending bidirectional session, with one file stuck in "pending" state

Causes: This can happen if a file is not in error for Aspera Sync but is in error for the underlying ascp process. For
example, when async is run with --checksum=none and access to the file is denied, async does not open the
file to calculate a checksum so it does not recognize that the file is unavailable, but ascp cannot open the file and
reports an error. This can also happen if a file is truncated during the initial synchronization; the server ascp reports
an error but the client ascp does not.

How to recover: Stop the Aspera Sync session by running the following command:

 asyncadmin -d path -N name -T

Check file permissions on the source and destination, and confirm that files are no longer being modified. Rerun your
Sync session. You do not need to use -x.

Async fails with no specific reason

Causes: This can happen if the async user does not have permission to the files. This problem often arises when
scripts are used to write files to one of the endpoints and the system permissions are overridden. Check the user's
permissions to the files.

How to recover: Stop the async session by running the following command:

 asyncadmin -d path -N name -T

Edit the script to write files with the correct permissions, and rerun the async session.

Error returned when you try a synchronization from Linux to Windows.

When you try to synchronize from Linux to Windows, you receive the following error:

Failed. Peer error: Symlink policy copy not supported on Windows peer.

Solution: Specify -n skip or --symbolic-links=skip when performing the synchronization.

Error returned when you synchronize two locations on the same computer

You can synchronize files between two locations on the same computer. If you only enter the "remote" directory,
such as -r /tmp/, then async fails with the following error:

Failed - Error, must specify remote-host name

 | Aspera Sync | 255

Solution: Specify the remote host and path as -r username@127.0.0.1:filename.

Troubleshooting Continuous Aspera Sync Errors
In continuous mode, Aspera Sync can encounter operating system-related issues. The following article describes how
to fix several of these.

Error returned when you attempt a continuous synchronization

If you attempt to run a continuous Aspera Sync from a client that does not support continuous mode, you receive the
following error:

Failed. File system change notification not supported by platform
 (code=45112)

If you attempt to run a continuous Aspera Sync to a server that does not support continuous mode, you receive the
following error:

Failed. [PEER} File system change notification not supported by platform
 (code=45112)

Solution: You must run your Aspera Sync session to or from a computer with an operating system that supports
continuous mode:

Continuous Aspera Sync Direction Supported Aspera Sync Client OS Supported Aspera Sync Server OS

PUSH Linux, Windows, macOS All

PULL All Linux, Windows, macOS

BIDI Linux, Windows, macOS Linux, Windows, macOS

If that is not possible, you have two options for a workaround:

1. You can run async as a cron job that detects file system changes with asperawatchd. For more information, see
Starting Aspera Watch Services and Creating Watches on page 201.

2. You can run async in continuous mode on source systems whose operating systems do not support file
notifications by using --scan-interval. This enables periodic scanning of the file system to detect changes.
The periodic scan is less efficient than the Aspera Watch Service file system monitoring.

Error returned when you attempt to monitor a Linux directory in continuous mode

If you attempt a continuous async session and the source is a Linux computer, you might receive the following
error:

Failed to set up directory change notification - reached the per-user limit
 on number of inotify watch descriptors.

Cause: You have exceeded the per-user limit imposed by the OS on the number of directories that can be monitored
(determined by the number of inotify watch descriptors).

How to recover: You must modify the kernel parameters on the Linux computer to increase the maximum number
of user watches. The following procedure might differ between Linux versions; consult your operating system
Administrator's guide for more information.

1. On the Linux computer, open /etc/sysctl.conf in a text editor and increase the maximum number of user
watches. Enter a value that exceeds the maximum number of directories ever expected to exist in the docroot that
is monitored by async. For example,

fs.inotify.max_user_watches=1000000

 | Aspera Sync | 256

2. Save your changes.
3. Load the configuration changes by running the following command:

sysctl -p

4. Confirm that the changes took effect by running the following command:

sysctl -a | grep max_user_watches
fs.inotify.max_user_watches=1000000

Resolving Bidirectional Aspera Sync File Conflicts
When run in bidirectional mode, Aspera Sync reports file conflicts when a file was modified on both endpoints and
Aspera Sync cannot determine which version to use.

For example, you have computer A and computer B and you want to synchronize the following directory and files on
both computers:

My_documents
–--Document1
–--Document2
–--Document3

If Document2 is changed on both computer A and computer B, then when you run the async session, Sync reports
the conflict:

async -N my_bidi_sync -d /my_documents -r colleague@B:/home/my_documents -w
 pass -K bidi
/ SYNCHRONIZED
/Document1 SYNCHRONIZED
/Document2 CONFLICT
/Document3 SYNCHRONIZED

Both versions of Document2 are left intact and you must manually resolve the conflict between them.

Resolve the conflict using one of the following methods, depending on if you have access to both endpoints (use
method 1 or 2), which changes you want to preserve, and how soon you need resolution:

1. Reconcile the files

The slowest method, but it preserves changes and resolves the issue immediately (once files are edited).

If you have access to the file on both endpoints, compare the files and edit them until they are no longer different.
To use a utility like diff, use ascp or other means to copy the remote file onto your local computer in a different
directory from the local conflicted file.

Verify that the two files are no longer conflicted by comparing their checksums. Run the following command for each
file to calculate its checksum:

 csum -h MD5 filepath

If the checksums match, then you can run the async session again and the files are synchronized without conflict.

async -N my_bidi_sync -d /my_documents -r colleague@B:/home/my_documents -w
 pass -K bidi
/ SYNCHRONIZED
/Document1 SYNCHRONIZED
/Document2 SYNCHRONIZED
/Document3 SYNCHRONIZED

 | Aspera Sync | 257

2. Delete the conflicted file from one endpoint

A faster method, but it does not preserve changes on both sides and requires access to both endpoints.

If you have access to the file on both endpoints, compare the files and determine if the changes to the conflicted file
on one endpoint do not need to be preserved (such as if they duplicate changes on the other endpoint or they add
obsolete or incorrect information). If changes on both endpoints need to be preserved, use one of the other methods.

Delete the file that has changes you do not want to preserve and run the Sync session again. The version with the
changes you want to keep is synchronized between the two endpoints. For example, if the changes to Document2 on
computer B do not need to be preserved, delete Document2 on computer B and then run the session again. All files
are synchronized.

3. Rename the conflicted file on one side

The fastest method, changes on both sides are preserved but in separate files, allowing you to resolve the original
conflict after synchronization. Requires access to only one endpoint.

If you only have access to one endpoint, want to preserve changes on both sides, but do not want to resolve the
conflict immediately, you can rename the conflicted file on one endpoint. When you run the async session, both
endpoints have the two versions of the conflicted file. You can then compare the differences between them and make
edits to the original file later.

For example, rename Document2 on computer A to Document2_computerA. When you run the async
session, computer A and computer B both have the following files:

async -N my_bidi_sync -d /my_documents -r colleague@B:/home/my_documents -w
 pass -K bidi
/ SYNCHRONIZED
/Document1 SYNCHRONIZED
/Document2 SYNCHRONIZED
/Document2_computerA SYNCHRONIZED
/Document3 SYNCHRONIZED

Appendix

Hardlinks
On Unix-based systems, it's possible to encounter multiple files with the same inode. The most common case of this
is a hardlink. Aspera Sync is agnostic as to whether two files with multiple inodes are hardlinks or if they are actually
different. It assumes that directories have unique inodes.

Handling Hardlinks

• One or more hardlinks at the source become regular files at the destination.
• In continuous mode, if a file with multiple links changes, only that file is replicated at the destination (even though

all links at the source changed).
• In scan mode (one-time and continuous startup), all files for that link are replicated at the destination.

Handling Moves in Scan Mode

• If a new file has only one link, Aspera Sync checks whether it is a move.
• If a new file has two or more links, Aspera Sync does not check whether it is a move (regardless of whether the

other links are inside or outside the Aspera Sync directory).
• For directories, Aspera Sync checks whether or not it is a move.

 | Aspera Sync | 258

Handling Moves in Continuous Mode
For all files and directories, notifications tell Aspera Sync the old and new paths; thus, a move is recognized in all
cases.

Creating SSH Keys
Public key authentication (SSH Key) is a more secure alternative to password authentication that allows users
to avoid entering or storing a password, or sending it over the network. Public key authentication uses the client
computer to generate the key-pair (a public key and a private key). The public key is then provided to the remote
computer's administrator to be installed on that machine.

1. Create a .ssh directory in your home directory if it does not already exist:

$ mkdir /home/username/.ssh

Go to the .ssh folder:

$ cd /home/username/.ssh

2. Run ssh-keygen to generate an SSH key-pair.

Run the following command in the .ssh folder. The program prompts you for the key-pair's filename. Press
ENTER to use the default name id_rsa. For a passphrase, you can either enter a password, or press return twice
to leave it blank:

 ssh-keygen -t rsa

3. Retrieve the public key file.

The key-pair is generated to your home directory's .ssh folder. For example, assuming you generated the key
with the default name id_rsa:

/home/username/.ssh/id_rsa.pub

Provide the public key file (for example, id_rsa.pub) to your server administrator so that it can be set up for
your server connection. The instructions for installing the public key on the server can be found in the Setting Up
a User's Public Key on the Server on page 29; however, the server may be installed on an operating system
that is different from the one where your client has been installed.

4. Use the key in an async session.

Use the option -i private_key_file, instead of -w password, as in the following example:

Note: Your private key and public key must be located in the same directory.

rsync vs. async Uni-directional Example
The async and rsync command-line options are similar for basic uni-direction synchronization.

Below are examples of rsync commands and their async equivalents for uni-directional synchronization.

Example 1

Options:

• Recursively synchronize the contents of a directory, /media/ to the remote system directory /backups/
media

• Preserve access and modification time stamps on files
• Preserve the owner and group ID
• No encryption
• Transfer policy = fair
• Target rate = 100,000 Kbps (100 Mbps)
• One-time transfer (not continuous)

 | Aspera Sync | 259

rsync command:

 rsync --stats -v -r -u -l -t -o -g -p media editor@docserver:backupsmedia

async equivalent:

 async -N Oneway -u -t -j -d media -r editor@docserver:backupsmedia -l 100M
 -w d0c5 -K push -c none

Example 2

Options:

• Recursively synchronize the contents of the directory mediawmv
• Exclude "." files within the directory
• Exclude all other directories
• Preserve the owner and group ID
• Preserve access and modification time stamps on files
• No encryption
• Transfer policy = fair
• Target rate = 100,000 Kbps (100 Mbps)
• One-time transfer (not continuous)

rsync command:

 rsync --stats -v -r -u -l -t -o -g -p media --include="media" --
include="mediawmv" --exclude="media.*" editor@docserver:backupsmedia

async equivalent:

 async -N Oneway -u -t -j -d media --include="media" --include="mediawmv" --
exclude="media.*" -r editor@docserver:backupsmedia -w d0c5 -K push -c none

Options Comparison Table

rsync Option async Option Description

--stats Enabled by default Display file transfer status

-v, --verbose Enabled by default Increase verbosity

-q, --quiet -q, --quiet Disable progress display

-r, --recursive Enabled by default Recurse into directories

-u, --update If a file exists at the destination with the
same name, then the default behavior is to
do nothing if the files are the same (size
and checksum), and overwrite if the file is
different.

Skip files that are newer on the receiver

-l, --links Linux and macOS: -n copy, --
symbolic-links=copy

Symbolic links are skipped in Windows.

Copy symbolic links as symbolic links
(Linux and macOS only)

-t, --times -t, --preserve-time (must have HST Server or
High-Speed Transfer Endpoint 3.1+)

Preserve modification times

 | Configuring for Other Aspera Products | 260

rsync Option async Option Description

-o, --owner -u, --preserve-uid Preserve owner

-g, --group -j, --preserve-gid Preserve group

-p, --perms With regard to directory attributes, if the
source mode doesn't have sufficient owner
permissions, then the destination will add:
owner rwx.

Preserve permissions

--version -A, --version Print version number

-h, --help -h, --help Show help

--include-from=file -I, --include-from=file Include filter (text file with paths for
inclusion). See Include and Exclude Filtering
Rules on page 237.

--exclude-from=file -E, --exclude-from=file Exclude filter (text file with paths for
exclusions). See Include and Exclude
Filtering Rules on page 237.

--include=pattern --include=pattern Include paths that match pattern. See Include
and Exclude Filtering Rules on page 237.

--exclude=pattern --exclude=pattern Skip paths that match pattern. See Include
and Exclude Filtering Rules on page 237.

-c none rsync, as a protocol, does not encrypt on
its own; however, rsync can enable/disable
the SSH encryption protocol (using option -
e ssh).

Configuring for Other Aspera Products

HST Server can be configured as the transfer server for IBM Aspera Faspex, IBM Aspera Shares, and IBM Aspera
Application for Microsoft SharePoint. It can also be configured and added as a node to Shares, IBM Aspera Console,
and IBM Aspera on Cloud (AoC) as a "tethered node".

For instructions on how to configure HST Server for Aspera web applications, see:

• Console: IBM Aspera Console Admin Guide
• Faspex: IBM Aspera Faspex Admin Guide
• Shares: IBM Aspera Shares Admin Guide
• Aspera for SharePoint: IBM Aspera Application for Microsoft SharePoint Admin Guide
• AoC: https://ibm.ibmaspera.com/help/admin/nodes

https://downloads.asperasoft.com/en/documentation/3
https://downloads.asperasoft.com/en/documentation/6
https://downloads.asperasoft.com/en/documentation/34
https://downloads.asperasoft.com/en/documentation/47
https://ibm.ibmaspera.com/help/admin/nodes

 | Set up HST Server for Node API | 261

Set up HST Server for Node API

HST Server must be configured in order to use the Aspera Node API. You can use the asnodeadmin tool to set up
the server and manage the Node API. The Node API uses a Redis database, which can be backed up and restored in
different ways, depending on what information you need to preserve.

Overview: Aspera Node API
The Aspera Node API is a feature of HST Server that provides a REST API for full programmatic control of the
Aspera transfer server environment. A daemon, asperanoded, provides node-specific services such as browsing,
searching, creating and deleting files and directories, and setting up transfers over HTTP or HTTPS.

The Node API allows you to connect nodes to Aspera web applications, such as IBM Aspera Faspex, IBM Aspera
Shares, and IBM Aspera on Cloud, as well as integrate Aspera applications with your web application. It is supported
by all Aspera server products and across multi-cloud and hybrid storage systems.

The Node API includes the following features and functionality:

• An HTTPS (by default port 9092) and HTTP (by default port 9091) interface.
• An API that uses JSON data format.
• The API is authenticated and the node daemon uses its own application-level users (node users).
• A node admin utility, asnodeadmin, for adding and managing Node API users and passwords. For more

information, see Node Admin Tool on page 264.
• It logs to syslog, akin to asperacentral. For more information about configuring logging, see Log Files on

page 330.

Requirements for Node API Use

• The line 127.0.0.1 localhost must appear in the hosts file:

/etc/hosts

• To run node-to-node transfers, the remote node must have version 3.7.4 or later. Earlier versions use an SSH key
type that is no longer accepted by servers as of version 3.7.4.

Node API Setup
The Aspera Node API comes with your installation of HST Server. To use it, you must configure your system and
create Node API credentials.

1. Select or create a system user to associate with the Node API credentials.

Aspera uses a specially configured system user for SSH authentication when starting transfers.

Note: If this user will be associated with Node API credentials that will be used to create access keys or bearer
tokens, either do not set a password for the user or create a very large password.

Create a user account—for example, aspera_user_1—by running the following command:

useradd aspera_user_1

2. Restrict the system user's access to the server's file system.

If the Node API user will use access key or bearer token authentication to authenticate to the Node API, configure
a restriction for the system user. If the Node API user will use Node API credentials to authenticate to the Node
API, configure a docroot for the system user.

• To configure a restriction:

 | Set up HST Server for Node API | 262

Run the following command:

 asconfigurator -x
 "set_user_data;user_name,username;file_restriction,|restriction"

Where username is the system user's username, | is a delimiter, and restriction is specific to the storage type
and path:

Storage Type Format Example

local storage For Unix-like OS:

• specific folder: file:////folder/*
• drive root: file:////*

For Windows OS:

• specific folder: file:///c%3A/folder/*
• drive root: file:///c*

Amazon S3 and IBM Cloud Object Storage - S3 s3://*

Azure azu://*

Azure Files azure-files://*

Azure Data Lake Storage adl://*

Alibaba Cloud oss://*

Google Cloud gs://*

HDFS hdfs://*

• To configure a docroot:

Run the following command:

 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

Where username is the system user's username and docroot is the absolute path to which the system user has
access.

3. Restrict user permissions with aspshell.

By default, all system users can establish a FASP connection and are only restricted by file permissions. Restrict
the user's file operations by assigning them to use aspshell, which permits only the following operations:

• Running Aspera uploads and downloads to or from this computer.
• Establishing connections in the application.
• Browsing, listing, creating, renaming, or deleting contents.

These instructions explain one way to change a user account or active directory user account so that it uses the
aspshell; there may be other ways to do so on your system.

Run the following command to change the user login shell to aspshell:

 sudo usermod -s /bin/aspshell username

Confirm that the user's shell updated by running the following command and looking for /bin/aspshell at
the end of the output:

 grep username /etc/passwd
username:x:501:501:...:/home/username:/bin/aspshell

 | Set up HST Server for Node API | 263

Note: If you use OpenSSH, sssd, and Active Directory for authentication: To make aspshell the default
shell for all domain users, first set up a local account for server administration because this change affects all
domain users. Then open /etc/sssd/sssd.conf and change default_shell from /bin/bash to /
bin/aspshell.

4. Set the IBM Aspera Connect public SSH key as an authorized key for the transfer user and ensure that they own
the file.

a) Create the .ssh directory in the user's home folder.

 mkdir /home/aspera_user_1/.ssh/

b) Copy the Connect public SSH key into .ssh and rename it authorized_keys (or append the public key
to authorized_keys if the file already exists).

 cp /opt/aspera/var/aspera_tokenauth_id_rsa.pub /home/
aspera_user_1/.ssh/authorized_keys

c) Ensure that .ssh and .ssh/authorized_keys are owned by the user.

 chown -R aspera_user_1:aspera_user_1 /home/aspera_user_1/.ssh
 chmod 600 /home/aspera_user_1/.ssh/authorized_keys
 chmod 700 /home/aspera_user_1

 chmod 700 /home/aspera_user_1/.ssh

5. Associate the Aspera transfer user with a Node API username and password.

For example, to assign Node API credentials to user aspera_user_1, run the following command:

 asnodeadmin -a -u node_api_username -p node_api_passwd -x aspera_user_1

6. (Optional) Change HTTPS port and/or SSL certificate.

The Aspera Node API provides an HTTPS interface for encrypted communication between node machines (on
port 9092, by default). To modify the HTTPS port, see Configuring the IBM Aspera NodeD Service on page
266. For information on maintaining and generating a new SSL certificate, see Setting up SSL for your Nodes
on page 272.

7. Configure other Node API settings.

• If you want to query transfers by using GET /ops/transfers or to retrieve usage data by using GET /usage,
enable activity logging on the node by running the following command:

 asconfigurator -x "set_server_data;activity_logging,true"

• If you want to query events by using GET /events, enable activity event logging on the node by running the
following command:

 asconfigurator -x "set_server_data;activity_event_logging,true"

As of version 3.8.0, activity_event_logging can be configured in individual access keys and
overrides the setting on the node. If activity_event_logging is enabled for the access key, any Node
API events associated with that access key are logged even if the node setting is false. If it is disabled for the
access key, events are not logged for the access key even if activity_event_logging is enabled on the
node.

• For a description of other settings, see Configuring the IBM Aspera NodeD Service on page 266.

8. Restart asperanoded to activate your changes.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

 | Set up HST Server for Node API | 264

Node Admin Tool
Use the asnodeadmin tool to manage (add, modify, delete, and list) Node API users. Root privileges are required.

Syntax:

 asnodeadmin [options]

Usage Examples

These examples use short options; run asnodeadmin -h to see the corresponding long options.

1. Add Node API username usr1 with the Node API password pass1 (you are prompted to enter if the -p option is
not given) and associate them with the transfer user aspera:

 asnodeadmin -au usr1 -x aspera [-p pass1]

2. Add Node API username usr2 with Node API password pass2 and associate them with transfer user root:

 asnodeadmin -au usr2 -p pass2 -x root

3. Modify Node API username usr1 by assigning a different password, pass1.1:

 asnodeadmin -mu usr1 -p pass1.1

4. List Node API usernames in the current user database:

 asnodeadmin -l

5. Delete Node API username usr1:

 asnodeadmin -du usr1

6. Create a bearer token: See Bearer Tokens on page 293.

All Options

-h,--help Display usage.
-A,--version Display version.
-a,--add Add a user (also reloads configuration).
--access-key access_key Specify the access_key. Use with --transfer
 options, --bearer-create, --bearer-verify,
 and --access-key-backup.
--access-key-backup filename Backup tenant data to an AOF file. Use with
 --access-key.
--access-key-restore filename Restore tenant data from an AOF file. Use
 with -u to change the Node API user (and
 system user associated with the access key).
--acl-add Add new ACLs for a user. May be used with -m
 or -a.
--acl-set Sets ACLs (clears old ACLs) for a user. May
 be used with -m or -a.
--acl-del Deletes ACLs for a user. May be used with -m.
--acl-list Lists all current ACLs for a user.
-b,--backup=filename Backup user data to a file.
--bearer-create Generate bearer token.
 --expires-at utc_date Specify the expiration date for --bearer-
create.
 --group-ids id1,id2,... Specify the group-id for --bearer-create.

 | Set up HST Server for Node API | 265

 --key-file-path dir Specify the key file directory for --
bearer-create.
 --scope-role role Specify the scope role for --bearer-
create.
 --token-key-length Specify the RSA key length for --bearer-
create.
 --user-id user_id Specify the user-id for --bearer-create.

--bearer-verify Verify bearer token.
-f conf_filename Specify the configuration file (default:
 aspera.conf).
-D... Debug level (default: no debug output).
-d,--del[ete] Delete an existing user (also reloads
 configuration).
--db-status Display the database status.
--db-startup Start up the database.
--db-shutdown Shut down the database.
--db-cleanup Clean up the database.
--db-update Update KV store keys format to the latest
 version.
--db-update-local Update KV store keys format to the latest
 version, only if using the local redis.
--internal Required for adding, modifying, or deleting
 internal users.
-L local_log_dir Local logging directory (default: no
 logging).
-l,--list List users.
-m,--mod[ify] Modify an existing user (also reloads
 configuration).
-P Display hashed passwords when listing users
 (with -l).
-p,--{pwd|password}=passwd Specify Node API user password.
-r,--restore=filename Restore user data from a file.
--reload Reload configuration settings, including the
 conf file
 (also done implicitly upon user add, modify
 and delete).
--show-transfer-queue Displays the current transfer queue.
--show-transfer-log Displays the output of data.
--transfer-bandwidth-cleanup Removes invalid bandwidth data.
--transfer-bandwidth-del-all Deletes all bandwidth counter data.
 --interruptible Allow bandwidth-del-all to be stopped
 while running.
--transfer-log-cleanup Delete all transfers from the activity log
 older than activity_retention_hrs.
--transfer-log-list List transfers from the transfer log.
--transfer-log-del xnid Delete an individual transfer from the
 activity log.
--transfer-queue Display the transfer queue.
-u,--user=username Specify Node API username (use with -a, -m, -
d, --access-key-restore).
-x,--xuser=xfer_username Specify system transfer user.

 | Set up HST Server for Node API | 266

Configuring the IBM Aspera NodeD Service
The IBM Aspera NodeD Service handles HTTP/HTTPS requests to HST Server. You can configure server settings
including the hostname, HTTP/HTTPS ports, the address and port of the Redis database, and SSL certificates.

Configuration Methods

The server can be configured for the Node API by using the asconfigurator command-line tool or by editing the
<server> section of aspera.conf:

• Asconfigurator: Use the following syntax, substituting option with the option from the following table and value
with the desired value:

 asconfigurator -x "set_server_data;option,value"

To view the current settings, run the following command:

 asuserdata -a

• Aspera.conf: Open it in a text editor with administrative privileges from the following location:

/opt/aspera/etc/aspera.conf

See the sample aspera.conf following the table.

After manually editing aspera.conf, validate your XML by running the following command:

 asuserdata -v

Node API Configuration Options

Important configuration considerations:

• Certain services must be restarted for changes in the settings to take effect, as described in the To Activate
Changes column. The commands to restart these services are given following the table.

• In addition to the Aspera server configuration, if you plan to transfer many small files with the Node API,
you might need to increase the number of file descriptors available on your system. If too few descriptors are
available, the Redis database and the transfer fail. For instructions, see Node API Transfers of Many Small Files
Fails on page 315.

asconfigurator option
aspera.conf setting

Description and Values To Activate
Changes...

server_name
<server_name>

Hostname or IP address.

Default: hostname

Restart
asperanoded

http_port
<http_port>

HTTP service port. Value is an integer 1 -
65535, default 9091. This setting is overridden
by <listen>.

Restart
asperanoded

https_port
<https_port>

HTTPS service port. Value is an integer 1 -
65535, default 9092. This setting is overridden
by <listen>.

Restart
asperanoded

enable_http
<enable_http>

Enable HTTP for the Node API services by
setting to true. Default: false. This setting is
overridden by <listen>.

Restart
asperanoded

 | Set up HST Server for Node API | 267

asconfigurator option
aspera.conf setting

Description and Values To Activate
Changes...

enable_https
<enable_https>

Enable HTTPS for the Node API services
by setting to true (default). This setting is
overridden by <listen>.

Restart
asperanoded

workers
<workers>

Number of worker threads. Default: 20. Restart
asperanoded

transfers_multi_session_default
<transfers_multi_session_default>

Number of ascp workers per transfer. Default:
1.

Restart
asperanoded

transfers_retry_duration
<transfers_retry_duration>

If a transfer fails, node will try to restart it for
the specified time, default 20m. If a transfer
restarts and makes some progress, then the retry
timer is reset and the next time if fails, it will
again try to restart it for 'retry_duration'. The
backoff interval for retrying within this duration
is internal to the application, and the number
of retries may vary depending on the transfer
queue.

Restart
asperanoded

transfers_retry_all_failures
<transfers_retry_all_failures>

Setting to true will retry all transfers,
including transfers otherwise considered
unretriable. Default: false.

Restart
asperanoded

listen
<listen>

To bind asperanoded on a specific address
(or addresses), specify a comma-delimited
list of listening ports. Ports have the format
[ip_address:]port[s]. To specify a
secure port, add 's' to the end of the port number,
for example 127.0.0.1:9092s.

The IP address is optional; however, if no IP
address is specified then the port binds to all
network interfaces on the server, rather than to
the single address.

Setting this option overrides <http_port>,
<https_port>, <enable_http>, and
<enable_https>.

Restart
asperanoded

cert_file
<cert_file>

Full pathname of the SSL certificate, which
must be in .pem format.

Default: /opt/aspera/etc/
aspera_server_cert.pem

Restart
asperanoded

max_response_entries
<max_response_entries>

Maximum number of entries to return in a
response. Default: 1000.

Reload node
configuration.

max_response_time
<max_response_time>

Maximum amount of time to wait for a long-
running operation. Default: 10.

Reload node
configuration.

db_dir Path to the directory where the database file is
saved. Before changing this value, you should

Restart
asperanoded

 | Set up HST Server for Node API | 268

asconfigurator option
aspera.conf setting

Description and Values To Activate
Changes...

<db_dir> back up your database. See Backing up and
Restoring the Node User Database Records on
page 270.

Default: /opt/aspera/var

and the Redis
database

db_port
<db_port>

Database service port. Value is an integer
1 - 65535, default: 31415. Before changing
this value, you should back up your database.
See Backing up and Restoring the Node User
Database Records on page 270.

Restart
asperanoded
and the Redis
database

ssl_ciphers
<ssl_ciphers>

The SSL encryption ciphers that the server will
allow, each separated by a colon (:). Default: all
of the following:

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
DHE-RSA-AES256-SHA
DHE-DSS-AES256-SHA
AES256-SHA
AES128-SHA256
DHE-RSA-AES128-SHA
DHE-DSS-AES128-SHA
RC2-CBC-MD5

This option may also be set in the <client>
section, in which case, when this machine
functions as a client, the specified ciphers are
requests to the server. If any of the ciphers in
the server's allow list coincide with those in the
client's request list, communication is allowed;
otherwise it is denied.

If you override this setting, the override is
always used. However, if you do not override
it, the default setting depends on the settings for
<ssl_protocol>. If <ssl_protocol>
is set to sslv23, then a large, relatively weak
selection of suites is allowed. If the protocol is
anything else, then a smaller, stronger selection
of suites is allowed. Many older web browsers
cannot handle the stronger set of suites, in which
case you may encounter compatibility issues.

Restart
asperanoded

ssl_protocol
<ssl_protocol>

The SSL protocol versions that the server
will allow. This option may also be set in the
<client> section, in which case, when this
machine is a client, the specified protocols
function as requests to the server. If any of the
protocols in the server's allow list coincide with
those in the client's request list, communication
is allowed; otherwise it is denied.

Restart
asperanoded

 | Set up HST Server for Node API | 269

asconfigurator option
aspera.conf setting

Description and Values To Activate
Changes...

Supported values: tlsv1, tlsv1.1, and
tlsv1.2. Default: tlsv1.

activity_logging
<activity_logging>

If true, enable querying transfers by using GET /
ops/transfers or to retrieve usage data by using
GET /usage. Default is false.

Restart
asperanoded

activity_event_logging
<activity_event_logging>

If true, allow the Node API to query transfers
that are associated with this access key
through the /events endpoint. The server
configuration can be overridden by the access
key configuration. This option must be enabled
for event reporting to IBM Aspera on Cloud.
Default is false.

Restart
asperanoded

files_recursive_counts_enabled
<files_recursive_counts_enabled>

If true, enable recursive counts. This option
must be enabled for event reporting to IBM
Aspera on Cloud. The server configuration can
be overridden by the access key configuration.
Default is false.

Restart
asperanoded

Example Node API Configuration in aspera.conf

<server>
 <server_name>your_hostname</server_name>
 <http_port>9091</http_port>
 <https_port>9092</https_port>
 <enable_http>false</enable_http>
 <enable_https>true</enable_https>
 <workers>20</workers>
 <transfers_multi_session_default>1</transfers_multi_session_default>
 <transfers_retry_all_failures>false</transfers_retry_all_failures>
 <transfers_retry_duration>20m</transfers_retry_duration>
 <listen> </listen>
 <cert_file>/opt/aspera/etc/aspera_server_cert.pem</cert_file>
 <max_response_entries>1000</max_response_entries>
 <max_response_time_sec>10</max_response_time_sec>
 <db_dir>/opt/aspera/var</db_dir>
 <db_port>31415</db_port>
 <ssl_ciphers>TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA:…:RC2-CBC-MD5</
ssl_ciphers>
 <ssl_protocol>tlsv1</ssl_protocol>
 <activity_logging>true</activity_logging>
 <activity_event_logging>true</activity_event_logging>
 <files_recursive_counts_enabled>true</files_recursive_counts_enabled>
</server>

Restarting and Reloading Services

Note: Running the commands below requires root privileges.

Restart asperanoded:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

 | Set up HST Server for Node API | 270

Reload the Node Configuration:

 sudo asnodeadmin --reload

Restart asperanoded and the Redis database:

1. Stop asperanoded:

 /etc/rc.d/init.d/asperanoded stop

2. Shutdown the database:

 asnodeadmin --db-shutdown

3. Start asperanoded:

 /etc/rc.d/init.d/asperanoded start

Note: The database service is started automatically when you restart the node service.

Securing the Node Service Behind a Proxy
If your HST Server must expose asperanoded to the internet, such as when setting it up as a IBM Aspera on Cloud
(AoC) node, Aspera strongly recommends protecting it with a reverse proxy and keeping the SSL ciphers up-to-
date (see https://cipherli.st/ for examples). (CIM-1694). Normally, asperanoded runs on port 9092, but nodes that
are added to AoC must have asperanoded run on port 443, the standard HTTPS port for secure browser access.
Configuring a reverse proxy in front of asperanoded provides additional protection (such as against DOS attacks) and
resource handling for requests to the node's 443 port.

Backing up and Restoring the Node User Database Records
These instructions describe how to back up and restore your Node API user data up to the time of the backup
operation.

1. Back up the Node API user data from the Redis database:

 sudo asnodeadmin -b filepathdatabase.backup

Important: When backing up the Redis database, all user data up to that point in time will be saved to the backup
file. Restoring the database (see Step 2, below) does not delete users added after this snapshot was taken. Thus, if
you added any users after backing up the database, they still exist in the system and are not affected by the restore
operation.

2. Restore the Node API user data to the Redis database:

 sudo asnodeadmin -r filepathdatabase.backup

Note: If you do not want to keep users that have been added since the last backup operation, delete them after
performing the restore with the following command:

 sudo asnodeadmin -du username

3. Restart asperanoded:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

https://cipherli.st/

 | Set up HST Server for Node API | 271

Backing up and Restoring Access Keys (Tenant Data)
Access keys can be backed up and restored by using the asnodeadmin tool. Only master access keys can be
directly backed up, not sub-access keys, but backing up a master access key backs up all associated sub-access keys,
too.

Access keys are not backed up when you back up the Node API user database (Backing up and Restoring the Node
User Database Records on page 270), but they are if you back up the entire Redis database (Backing up and
Restoring a Node Database on page 271).

Back up Access Keys

Run the following command for each access key:

 asnodeadmin --access-key access_key_id --access-key-backup filename

Where filename is the AOF file to which the access key data is saved.

Restore Access Keys

Run the following command:

 asnodeadmin [-u username] --access-key-restore filename

Use the -u username option to change the Node API user (and system user) associated with the restored access
key.

Backing up and Restoring a Node Database
These instructions describe how to back up and restore the entire Redis database of a node, which includes Node API
users, their access keys, and transfer history. If your transfer server is an IBM Aspera on Cloud (AoC) node, migrate
AoC data from one node to another by backing up the Redis database on the original node and restoring the database
on a new node.

If you only need to back up and restore Node API usernames and passwords (the Node API user database), use
asnodeadmin commands; see Backing up and Restoring the Node User Database Records on page 270. If you
also want to back up and restore access keys, see Backing up and Restoring Access Keys (Tenant Data) on page
271.

These instructions assume that the node is using the default port for the Redis database, port 31415. If your
deployment uses a different port for Redis, substitute it in the commands accordingly.

1. Verify that the original node and new node are running the same version of Aspera software.

Run ascp -A on a command line to view the Aspera product and version.

2. On the original node, back up the database.

Stop asperanoded and create the backup file by running the following commands:

 /etc/rc.d/init.d/asperanoded stop
 asredis -p 31415 BGREWRITEAOF

The backup is stored as appendonly.aof in the following location:

/opt/aspera/var/appendonly.aof

3. If migrating the database, move the appendonly.aof to the same location on the new node.

 | Set up HST Server for Node API | 272

4. On the new node, stop asperanoded:

 /etc/rc.d/init.d/asperanoded stop

5. Flush existing data from the Redis database on the new node.

asredis -p 31415 FLUSHALL

6. Load the backup database file into the new node database.

 cat appendonly.aof | asredis --pipe -p 31415

7. On both nodes, restart asperanoded.

 /etc/rc.d/init.d/asperanoded start

8. In AoC, confirm that the hostname matches the DNS entry for the new node.

To view the node URL, go to Admin View > Nodes & Storage.

9. Confirm the database restoration succeeded.

Run the following command to the original and new nodes. If the database restoration succeeded, the output from
each is identical.

 curl -ki -u {node_username:node_password} http[s]://{hostname}:
{http_port}access_keys

Note: Curl is included in many Unix-based operating systems. To check if it is installed, enter curl on the
command line. If it is not installed, download it from the Curl website: https://curl.haxx.se/download.html.

Setting up SSL for your Nodes
The Aspera Node API provides an HTTPS interface for encrypted communication between nodes (on port
9092, by default). For example, if you are running the IBM Aspera Faspex web UI or the IBM Aspera Shares
web UI on one computer, you can encrypt the connection (using SSL) with your transfer server or file-storage
node on another computer. HST Server nodes are preconfigured to use Aspera's default, self-signed certificate
(aspera_server_cert.pem). You might need to create a new certificate or install a valid, signed certificate,
such as when you are configuring HST Server as a IBM Aspera on Cloud node.

The self-signed Aspera certificate is located in the following directory:

/opt/aspera/etc/

About PEM Files: The PEM certificate format is commonly issued by Certificate Authorities. PEM certificates
have extensions that include .pem, .crt, .cer, and .key, and are Base-64 encoded ASCII files containing "-----BEGIN
CERTIFICATE-----" and "-----END CERTIFICATE-----" statements. Server certificates, intermediate certificates,
and private keys can all be put into the PEM format.

To generate a new certificate:

1. Generate a Private Key and Certificate Signing Request (CSR) using OpenSSL.

In a Terminal window, run the following command (where my_key_name.key is the name of the unique key
that you are creating and my_csr_name.csr is the name of your CSR):

 openssl req -new -nodes -keyout my_key_name.key -out my_csr_name.csr

2. At the prompt, enter your X.509 certificate attributes.

https://curl.haxx.se/download.html

 | Set up HST Server for Node API | 273

Important: The Common Name field must be filled in with the fully qualified domain name of the server
to be protected by SSL. If you are generating a certificate for an organization outside the U.S., go to https://

www.iso.org/obp/ui/, select Country codes, and click to view a list of two-letter ISO country codes.

Generating a 1024 bit RSA private key
....................++++++
................++++++
writing new private key to 'my_key_name.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a
 DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:Your_2_letter_ISO_country_code
State or Province Name (full name) [Some-
State]:Your_State_Province_or_County
Locality Name (eg, city) []:Your_City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Your_Company
Organizational Unit Name (eg, section) []:Your_Department
Common Name (i.e., your server's hostname) []:secure.yourwebsite.com
Email Address []:johndoe@yourwebsite.com

You are also prompted to input "extra" attributes, including an optional challenge password.

Note: Manually entering a challenge password when starting the server can be problematic in some situations, for
example, when starting the server from the system boot scripts. Skip entering a challenge password by pressing
Enter.

...
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

After finalizing the attributes, the private key and CSR are saved to your root directory.

Important: If you make a mistake when running the OpenSSL command, you may discard the generated files
and run the command again. After successfully generating your key and CSR, be sure to guard your private key,
as it cannot be re-generated.

3. If required, send the CSR to your Certifying Authority (CA).

Once completed, you have a valid, signed certificate.

Note: Some certificate authorities provide a CSR generation tool on their website. For additional information,
check with your CA.

4. If required, generate a self-signed certificate.

You may need to generate a self-signed certificate for the following reasons:

• You don't plan on having your certificate signed by a CA.
• You plan to test your new SSL implementation while the CA is signing your certificate.

To generate a self-signed certificate through OpenSSL, run the following command:

 openssl x509 -req -days 365 -in my_csr_name.csr -signkey my_key_name.key
 -out my_cert_name.crt

https://www.iso.org/obp/ui/
https://www.iso.org/obp/ui/

 | Set up HST Server for Node API | 274

This creates a certificate that is valid for 365 days.

5. Create the .pem file.

Note: Before overwriting the existing .pem file, be sure to back up this file as aspera_server_cert.old),
in the following directory:

/opt/aspera/etc/

Copy and paste the entire body of the key and cert files into a single text file and save the file as
aspera_server_cert.pem. The order of the text in the new .pem file depends on if you have individual
certificate files or a bundle of certificates.

Individual certificate files:

a. The private key.
b. The primary server's certificate.
c. The intermediate certificates, if any (if more than one, begin with the least authoritative and proceed in

ascending order).
d. The root certificate.

Bundle of certificates:

a. The private key.
b. The primary server's certificate.
c. The entire bundle (as one file).

For a certificate bundle, create a new file named aspera_server_cert.chain in the same directory as the
.pem files. Copy and paste the root certificate into this file, followed by the bundle.

6. Enable SSL options in aspera.conf.

For information about enabling specific SSL protocols with <ssl_protocol> and enabling specific encryption
ciphers with <ssl_ciphers>, see Configuring the IBM Aspera NodeD Service on page 266.

7. Restart asperanoded by running the following command:

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Installing SSL Certificates
Aspera strongly recommends installing valid, signed SSL certificates on your HST Server. The SSL certificates are
uasperanoded and asperahttpd.

Requirements:

• A signed root certificate or certificate bundle (root certificate with chained or intermediary certificates) from an
authorized Certificate Authority. For instructions on generating an SSL certificate, see Setting up SSL for your
Nodes on page 272.

• The certificate is in .pem format. Other formats are not supported.

Procedure Overview:

The procedure modifies or creates three files:

aspera_server_key.pem • Created automatically during transfer server
installation.

• Found in the default Aspera installation directory: /
opt/aspera/etc

• Contains the default private key.

 | Set up HST Server for Node API | 275

• In this procedure, you replace the default private
key with the new private key generated with the
certificate signing request (CSR).

aspera_server_cert.pem • Created automatically during transfer server
installation.

• Found in the default Aspera installation directory: /
opt/aspera/etc

• Contains the default self-signed certificate.
• In this procedure, you replace the default self-signed

certificate with the content described in step 3.

aspera_server_cert.chain • You create this file, as described below.
• You place the file in the same directory

as aspera_server_key.pem and
aspera_server_cert.pem.

• You place the certificate bundle (chained or
intermediary certificates) from the CA in this file.

Changing Filenames and Locations:

If desired, the default filenames and locations of the certificate files and chain files can be changed by configuring
settings in the transfer server's aspera.conf file, using asconfigurator commands:

 asconfigurator -x "set_http_server_data;cert_file,path/certfile.pem"
 asconfigurator -x "set_http_server_data;key_file,path/keyfile.pem"
 asconfigurator -x "set_server_data;cert_file,path/certfile.pem"

Note: The chain file for asperanoded must match the location and name of the asperanoded certificate file,
but with the .chain extension.

The commands add the following text to aspera.conf:

<http_server>
 ...
 <key_file>path/keyfile.pem</key_file> <!-- key file for asperahttpd
 -->
 <cert_file>path/certfile.pem</cert_file> <!-- cert file for asperahttpd
 -->
 ...
</http_server>

<server>
 ...
 <cert_file>path/certfile.pem</cert_file> <!-- cert file for asperanoded
 -->
 ...
</server>

Installing the SSL Certificates:

1. Back up the default private key and self-signed certificate, using the following commands:

cd /opt/aspera/etc
cp aspera_server_key.pem aspera_server_key.pem.bak
cp aspera_server_cert.pem aspera_server_cert.pem.bak

2. Open aspera_server_key.pem and replace the existing content with the new private key generated with the
certificate signing request (CSR). Save and close the file.

 | Set up HST Server for Node API | 276

3. In aspera_server_cert.pem, replace the existing content with the following, in the order shown:

a. the new private key
b. the server certificate
c. any chained or intermediary certificates from the CA in order of ascending authority, for example:

intermediary certificate 1
intermediary certificate 2
intermediary certificate 3

d. the root certificate from the CA

Save and close the file.

4. Create a new file named aspera_server_cert.chain. This file must reside in the same directory as the
.pem files.

If you have a certificates bundle from the CA, the contents of aspera_server_cert.chain must consist of
the following, in the order shown:

a. the server certificate
b. the certificates bundle, which includes the root certificate

If you do not have a certificates bundle from the CA, the contents of aspera_server_cert.chain must
consist of the following, in the order shown:

a. the server certificate
b. any chained or intermediary certificates from the CA in order of ascending authority, for example:

intermediary certificate 1
intermediary certificate 2
intermediary certificate 3

c. the root certificate from the CA

5. Restart asperacentral, asperanoded, and asperahttpd:

service asperacentral restart
service asperahttpd restart
service asperanoded restart

6. Verify the certificates by using OpenSSL.

a) Test that you can connect to asperanoded by running the following command:

 openssl s_client -connect myserver:9092

This example assumes that you are using the default node port (HTTPS 9092). Replace myserver with the IP
address or hostname of your server.

The command returns 0 for success or 1 for failure.

Output examples:

Success: The following sample output shows that verification was successful because verify return is 0.

depth=2 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU =
 "(c) 2006 VeriSign, Inc. -
For authorized use only", CN = VeriSign Class 3Public Primary
 Certification Authority - G5
verify error:num=20:unable to get local issuer certificate
verify return:0

Failure: The following sample output shows that verification failed because verify return is 1.

depth=0 C = US, ST = California, L = Emeryville, O = IBM, OU = Aspera
 Inc IT Department, CN = *.asperafiles.com

 | Authentication and Authorization | 277

verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 C = US, ST = California, L = Emeryville, O = IBM, OU = Aspera
 Inc IT Department, CN = *.asperafiles.com
verify error:num=27:certificate not trusted
verify return:1
depth=0 C = US, ST = California, L = Emeryville, O = IBM, OU = Aspera
 Inc IT Department, CN = *.asperafiles.com
verify error:num=21:unable to verify the first certificate
verify return:1

Note: You must see as many elements in the output as there are certificates in the chain. In the following
examples there is one root certificate and two chained certificates, so the output must show three elements to
prove the installation was successful.

Success: The following example shows a successful verification for one root certificate and two intermediary
certificates in the chain:

Certificate chain
 0 s:/C=US/ST=California/L=Emeryville/O=IBM/OU=Aspera Inc IT Department/
CN=*.asperafiles.com
 i:/C=US/O=Symantec Corporation/OU=Symantec Trust Network/CN=Symantec
 Class 3 Secure Server CA - G4
 1 s:/C=US/O=Symantec Corporation/OU=Symantec Trust Network/CN=Symantec
 Class 3 Secure Server CA - G4
 i:/C=US/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=(c) 2006
 VeriSign, Inc. - For authorized use only/CN=VeriSign Class 3 Public
 Primary Certification Authority - G5
 2 s:/C=US/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=(c) 2006
 VeriSign, Inc. - For authorized use only/CN=VeriSign Class 3 Public
 Primary Certification Authority - G5
 i:/C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification
 Authority

Failure: The following example shows an unsuccessful verification, since only the root certificate is
displayed.

Certificate chain
 0 s:/C=US/ST=California/L=Emeryville/O=IBM/OU=Aspera Inc IT Department/
CN=*.asperafiles.com
 i:/C=US/O=Symantec Corporation/OU=Symantec Trust Network/CN=Symantec
 Class 3 Secure Server CA - G4

b) If verification fails, inspect your certificate content by running the following command:

 openssl x509 -in certificate.crt -text -noout

Authentication and Authorization

Introduction to Aspera Authentication and Authorization
HST Server can be configured to support SSH or HTTPS authentication and authorization for browsing and transfers.
For both methods, the client ascp process connects to the server by using the SSH protocol and initiates the server-
side ascp process. Therefore, SSH connectivity and authentication to the server is always used.

SSH: SSH authentication is the original method for authentication, and is typically used for transfers between Aspera
clients and servers. SSH authentication requires a system user account that is configured with a docroot or restriction
in aspera.conf. The user can authenticate by providing a system password or SSH key.

 | Authentication and Authorization | 278

HTTPS: HTTPS (Node API) authentication was introduced to support browsing and transfers that are initiated
through Aspera web applications (IBM Aspera Faspex, IBM Aspera Shares, and IBM Aspera on Cloud), and uses a
token-based authorization security layer in addition to SSH.

Authorization Tokens: When the server is configured for token authorization, the server-side ascp process requires
a valid token from the client before it can start. It is the responsibility of the client to provide this token. The Aspera
web applications do this automatically through HTTPS (Node API). The IBM Aspera Desktop Client GUI and IBM
Aspera Command-Line Interface do this automatically when connecting to Aspera web applications.

Types of Tokens

Aspera uses three types of tokens: transfer tokens, basic tokens, and bearer tokens.

• Transfer Tokens: A transfer token authorizes specific content uploads to a destination or content downloads
from a remote source. Transfer-token-based authorization is generally used for FASP transfers initiated through
Aspera web applications, such as IBM Aspera Faspex, IBM Aspera Shares, and IBM Aspera Application for
Microsoft SharePoint, but can be used in place of SSH authentication for other types of Aspera products. For
more information, see Transfer Token Creation (Node API) on page 279 and Transfer Token Generation
(astokengen) on page 281.

• Basic Tokens: An Aspera basic token is created from an access key ID and secret, which authorizes a transfer
user access to a specific area of a storage and authenticates that user to the storage. Basic tokens are less restrictive
than transfer tokens. They can be used to transfer with any Aspera server that supports access keys (all but IBM
Aspera on Cloud). For more information, see Basic Tokens on page 292.

• Bearer Tokens: A bearer token is created from an access key ID, access key secret, and an SSL private-public
key pair. Bearer token authentication is required for transfers to and from IBM Aspera on Cloud, but can be used
for transfers with all other Aspera servers, too. For more information, see Bearer Tokens on page 293.

Require Token Authorization: Set from the Command Line
When transfer users or groups are configured to require token authorization, only transfers initiated with a valid token
(transfer token, basic token, or bearer token) are allowed to transfer to or from the server. Token authorization can be
set independently for incoming transfers and outgoing transfers.

The following examples use a transfer user called aspera_user_1.

1. Choose or create the transfer user on the server.

The user should not have a password. If the system does not allow this, create a very large password.

2. Set the IBM Aspera Connect public SSH key as an authorized key for the transfer user and ensure that they own
the file.

a) Create the .ssh directory in the user's home folder.

 mkdir /home/aspera_user_1/.ssh/

b) Copy the Connect public SSH key into .ssh and rename it authorized_keys (or append the public key
to authorized_keys if the file already exists).

 cp /opt/aspera/var/aspera_tokenauth_id_rsa.pub /home/
aspera_user_1/.ssh/authorized_keys

c) Ensure that .ssh and .ssh/authorized_keys are owned by the user.

 chown -R aspera_user_1:aspera_user_1 /home/aspera_user_1/.ssh
 chmod 600 /home/aspera_user_1/.ssh/authorized_keys
 chmod 700 /home/aspera_user_1

 chmod 700 /home/aspera_user_1/.ssh

 | Authentication and Authorization | 279

3. To require token authorization for uploads and downloads, and to set the token encryption key, run the following
command:

 asconfigurator -x
 "set_user_data;user_name,aspera_user_1;authorization_transfer_in_value,token;authorization_transfer_out_value,token;token_encryption_key,key"

Aspera recommends that the key be a random string of at least 20 characters. This command creates the following
text in aspera.conf:

<user>
 <name>aspera_user_1</name>
 <authorization>
 <transfer>
 <in>
 <value>token</value>
 </in>
 <out>
 <value>token</value>
 </out>
 </transfer>
 <token>
 <encryption_key>gj5o930t78m34ejme9dx</encryption_key>
 </token>
 </authorization>
 <file_system>
 ...
 ...
 </file_system>
</user>

You can also configure token-authorization settings in a <group> section to be applied to all users in the
group or in the <default> section to apply them globally for all users. For instructions on how to run
asconfigurator commands to do so, as well as to view other token configuration options, see User, Group
and Default Configurations on page 299.

Transfer Token Creation (Node API)
Aspera recommends using the Node API tool to generate transfer tokens, though they can be generated using the
astokengen tool. Using the Node API tool enables greater flexibility and functionality because astokengen
creates tokens constrained by the settings in aspera.conf.

Note: Transfer tokens for use with Ascp 4 must be created with astokengen. Otherwise, astokengen is
most useful for decoding tokens during application development for debugging purposes. For more information on
astokengen, see Transfer Token Generation (astokengen) on page 281.

Prerequisites:

In order to create transfer tokens with the Node API, you must set up HST Server for the Node API. For instructions,
see Node API Setup on page 261.

Creating Transfer Tokens with Node API Calls

Curl is used to call the API, and is freely available for download for all operating systems supported by Aspera:

https://curl.haxx.se/

To generate a token, run a curl command to the /files/upload_setup or /files/download_setup
endpoint (depending on what kind of token you want to generate). The request body includes a JSON object called
the transfer_requests. The Node API output response, a transfer_specs JSON object, includes a token,

https://curl.haxx.se/

 | Authentication and Authorization | 280

as well as a description of who is authorized to transfer using the token, what files can be transferred, and transfer
properties.

Note: When generating tokens with an IBM Aspera Shares server, the endpoints are /node_api/files/
upload_setup and /node_api/files/download_setup.

Upload token

General syntax:

 curl -i -X POST -u node_username:node_user_password -d
 '{"transfer_requests" : [{"transfer_request" : { "paths" : [{}],
 "destination_root" : "/" } }] }";' http(s)://node_server:node_port/files/
upload_setup

This command specifies the following:

-i Include the HTTP header in the output.
-X POST Specify a POST request to the HTTP server, rather than the default GET request. (This option is not
required when -d is used, but is included here for completeness).
-u node_username:node_user_password Authenticate using the Node API username and password
that are associated with the transfer user who has been configured for token authorization.
-d Send the specified data payload to the HTTP server. The payload can be entered in the command line, as it is
here, or stored in a file, as described below.
http(s)://... The endpoint URL.

For example, the following request allows the user, lion, who is associated with the Node API username,
nodeuser, and Node API password, nodepassword, to upload any files from the source to any location on the
destination, serengeti.com:

 curl -i -v -X POST -u nodeuser:nodepassword -d '{ "transfer_requests" :
 [{ "transfer_request" : { "paths" : [{}], "destination_root" :
 "/" } }] }";' http://serengeti.com:9091/files/upload_setup

The response output is the following, from which you extract the token string ATV7_HtfhDa-
JwWfc6RkTwhkDUqjHeLQePiOHjIS254_LJ14_7VTA:

HTTP/1.1 200 OK
Cache: no-cache
Connection: close
Content-Type: application/x-javascript
{
 "transfer_specs" : [{
 "transfer_spec" : {
 "paths" : [{}],
 "source_root" : "",
 "destination_root" : "/",
 "token" : "ATV7_HtfhDa-JwWfc6RkTwhkDUqjHeLQePiOHjIS254_LJ14_7VTA",
 "direction" : "send",
 "target_rate_cap_kbps" : 100000,
 "cipher" : "none",
 "rate_policy_allowed" : "fair",
 "rate_policy" : "fair",
 "target_rate_kbps" : 45000,
 "min_rate_kbps" : 0,
 "remote_host" : "serengti.com",
 "remote_user" : "lion",
 "ssh_port" : 22,
 "fasp_port" : 33001,
 "http_fallback" : true,
 "http_fallback_port" : 8080
 }

 | Authentication and Authorization | 281

 }]
}

You can also specify the transfer request parameters in a file and refer to it in the curl command, which is particularly
useful for transfer requests that list many items for source content and destination. For example, the transfer request
file, upload_setup.json, could contain the following information for a file pair list:

{
 "transfer_requests" : [
 {
 "transfer_request" : {
 "destination_root" : "/",
 "paths" : [
 {
 "destination" : "/archive/monday/texts/first_thing",
 "source" : "/monday/first_thing.txt"
 },
 {
 "destination" : "/archive/monday/texts/next_thing"
 "source" : "/monday/next_thing.txt",
 },
 {
 "destination" : "/archive/monday/texts/last_thing",
 "source" : "/monday/last_thing.txt"
 }
]
 }
 }
]
}

To use this file in the curl command, specify the path to the file in the -d option, as follows:

-d @upload_setup.json

Download token

The method for generating a download token is the same as for an upload token, except that you use the /files/
download_setup (or /node_api/files/download_setup in the case of Shares) endpoint.

Using Transfer Tokens in the Command Line

Once the token is generated, it can be used to authorize FASP transfers by setting the ASPERA_SCP_TOKEN
environment variable or using the -W option for ascp and async sessions.

Transfer Token Generation (astokengen)
The astokengen command line tool enables users to generate and decode transfer tokens. Unless you are creating
a transfer token for an Ascp 4 session, which requires that you use astokengen with the --full-paths option,
Aspera recommends using the Node API tool to work with transfer tokens as it provides more functionality. For
instructions see Transfer Token Creation (Node API) on page 279. The Node API response includes FASP transfer
parameters and the token string, whereas astokengen generates only a specific type of token. astokengen is
most useful for decoding tokens during application development for debugging purposes.

Syntax and Options

 astokengen [options]

 | Authentication and Authorization | 282

Option (short
form)

Option (long form) Description

-A --version Print version information.

--mode=mode Direction of the transfer mode (send | recv)

-p --path=path Source path

--dest=destination Destination path

-u --user=user Generate the token for this user name.
This name is embedded in the token and
also used to retrieve further information
from aspera.conf (user_value and
token_life_seconds).

--source-prefix=prefix Prepend the given path to each source path.

--full-paths Store the entire path set in the token.

Note: This option is required when creating
tokens for A4 transfers.

--file-list=filename Specifies a file name that contains a list of
sources for a download token. Each line of the
file contains a single source and blank lines are
ignored. For example:

/monday/first_thing.txt
/monday/next_thing.txt
/monday/last_thing.txt

--file-pair-list=filename Specifies a file name that contains a multiplexed
list of source and destination pairs for an upload
or download token. Each pair of lines encodes
one source and one destination and blank lines
are ignored. For example

/monday/first_thing.txt
/archive/monday/texts/
first_thing
/monday/next_thing.txt
/archive/monday/texts/
next_thing
/monday/last_thing.txt
/archive/monday/texts/
last_thing

-v token Verify token against user and path parameters.

-t token Display the contents of the token.

-k passphrase Passphrase to decrypt token. For use with -t.

-b Assume user name and paths are encoded in
base64.

 | Authentication and Authorization | 283

General Usage Examples

• Display the contents of the token:

 astokengen -t token [options]

• Authorize uploads to a specific destination:

 astokengen --mode=send [options] -u user --dest=path [-v token]

• Authorize uploads of one or more files as source/destination pairs to a specific destination:

 astokengen --mode=send [options] -u user --file-pair-list=filename --
dest=destination [-v token]

• Authorize downloads of one or more files or directories from a specific destination:

 astokengen --mode=recv [options] -u user -p path [-p path …] [-v token]

• Authorize downloads of files specified in a file list:

 astokengen --mode=recv [options] -u user --file-list=filename [-v token]

• Authorize downloads of one or more files as source/destination pairs:

 astokengen --mode=recv [options] -u user --file-pair-list=filename [-
v token]

Usage Examples

Description Example

Common upload In a common upload, only the destination is encoded into the token.

 astokengen --user=user --dest=path --mode=send

Source paths and file lists (--path and --file-list) are not allowed and will cause
astokengen to fail.

Paired upload The destination is prepended to the destinations in the paired list file and they are encoded into
the token. The destinations are in the odd numbered lines of the file (1, 3, 5, 7, and so on).

 astokengen --user=user --dest=path --file-pair-list=filename
 --mode=send

Source paths and file lists (--path and --file-list) are not allowed and will cause
astokengen to fail.

Common
download

The specified paths are encoded into the token.

 astokengen --user=user --path=filepath1 --path=filepath2 --
mode=recv

 | Authentication and Authorization | 284

Description Example

 astokengen --user=user --file-list=filename --mode=recv

In this case, --dest and --file-pair-list are illegal.

Paired download The source files from the file pair list are encoded in the token. The sources are in the even
numbered lines of the file (0, 2, 4, 6, 8, etc.).

 astokengen --user=user --file-pair-list=filename --mode=recv

In this case, --dest, --path and --file-list are illegal.

Access Key Authentication
Access key authentication provides an alternative to entering the security credentials of a Node API user or system
user. Because an access key is restricted to its own storage (local or cloud), it allows access control and usage
reporting to be segregated by storage. This offers significant benefits to multi-tenant service providers and enterprise
installations with multiple departments.

Access Key Support:

Access key authentication can by used by Aspera client products such as IBM Aspera Desktop Client, HST Server,
HST Endpoint, and IBM Aspera Drive. It can also be used by IBM Aspera Faspex, IBM Aspera Shares, and AIBM
Aspera on Cloud transfer service. For details about using access key authentication with these products, see their
documentation.

Access Key Restrictions:

• The transfer user must have a file restriction configured in aspera.conf, rather than a docroot. If a docroot is
configured, access key creation and use fails.

• Access keys must specify the storage path. Although they can be created with no storage specified, transfers using
these keys fail.

Access Key Creation:

1. Configure the system user with a restriction and ensure that no docroot is configured:

 asconfigurator -x
 "set_user_data;user_name,username;absolute,AS_NULL;file_restriction,|restriction"

The format of the restriction depends on the storage type (these examples allow access to the entire storage):

Storage Type Format Example

local storage For Unix-like OS:

• specific folder: file:////folder/*
• drive root: file:////*

For Windows OS:

• specific folder: file:///c%3A/folder/*
• drive root: file:///c*

Amazon S3 and IBM Cloud Object Storage - S3 s3://*

Azure azu://*

Azure Files azure-files://*

 | Authentication and Authorization | 285

Storage Type Format Example

Azure Data Lake Storage adl://*

Alibaba Cloud oss://*

Google Cloud gs://*

HDFS hdfs://*

For example, to configure the system user xfer with a restriction that allows full access to local storage:

 asconfigurator -x
 "set_user_data;user_name,xfer;absolute,AS_NULL;file_restriction,|
file:////*"

2. Assign a Node API username and password to the system user. This command requires admin permissions.

 asnodeadmin -au node_username -p node_password -x system_user

For example, to assign the Node API username nodeuser to the system user xfer:

 asnodeadmin -au nodeuser -p asperaissofast -x xfer

This command automatically reloads the node configuration.

3. To create access keys, send a request to the Node API /access_keys endpoint by using curl command.

Curl is included in many Unix-based operating systems. To determine if it is installed, run curl on the command
line. If it is not installed, download it from the Curl website: https://curl.haxx.se/download.html.

To create an access key, run the following command on the server:

 curl -ki -u node_username:node_password -X POST https://localhost:9092/
access_keys -d @access_key_config.json

where access_key_config.json is the access key configuration file.

For example,

 curl -ki -u nodeadmin:superP@55wOrD -X POST https://localhost:9092/
access_keys -d @nodeadminak_client1.json

Access Key Configuration

The access key configuration is specified in JSON. Only the "storage" object is required; the Node API creates an
access key ID and secret if they are not provided.

Note: If your access key configuration is simple, you can specify it on the command line,
replacing -d @ access_key_config.json with an argument like -d'{"storage":
{"type":"local","path":"projectsproject1"}}'.

{
 "id" : "access_key_id",
 "secret" : "access_key_secret",
 "token_verification_key" : "token_key",
 "storage" : {
 storage_configuration
 },
 "license" : {
 "customer_id" : "customer_id",
 "entitlement_id" : "entitlement_id"
 },

https://curl.haxx.se/download.html

 | Authentication and Authorization | 286

 "configuration" : {
 "transfer" : {
 "cipher" : "cipher",
 "policy" : "policy",
 "target_rate_kbps" : target_rate,
 "target_rate_cap_kbps" : target_rate_cap,
 "content_protection_secret" : "secret",
 "preserve_timestamps" : true|false,
 "aggressiveness" : "aggressiveness",
 },
 "server" : {
 "activity_event_logging" : true|false,
 "recursive_counts" : true|false,
 }
 },
 "files_filelock_enabled" : true|false,
 "files_filelock_restriction" : "restriction"
 }

Element Required Type Description

id Optional String ID of the access key. Returns 209 (conflict) if
it already exists. If it is not provided, the Node API
creates an ID and returns the value in the response.

secret Optional String Access key secret. If it is not provided, the Node API
creates a secret and returns the value in the response.

token_verification_keyOptional String Required when the access key is used to create a bearer
token, the public key corresponding to the private key
that is used to create the bearer token.

storage Required JSON Storage specification object. See examples following
this table.

license Optional JSON object Entitlement information, similar to regular Aspera
on Demand. This is needed when the access key logs
against SafeNet.

customer_id Optional String Customer ID

entitlement_id Optional String ID of the entitlement

configuration Optional JSON object The transfer and server configuration object.

transfer Optional JSON object The transfer configuration object. Available as of 3.8.0.

cipher Optional String The encryption mode and minimum cipher key length
allowed by the server for transfers that are authorized
by this access key. Default is unset, such that the
transfer authorized by the access key must respect the
server configuration.

Aspera supports three sizes of AES cipher keys (128,
192, and 256 bits) and supports two encryption modes,
cipher feedback mode (CFB) and Galois/counter mode
(GCM). The GCM mode encrypts data faster and
increases transfer speeds compared to the CFB mode,
but the server must support and permit it.

Note: To ensure client compatibility when requiring
encryption, use a cipher with the form aes-XXX,
which is supported by all clients and servers. Requiring

 | Authentication and Authorization | 287

Element Required Type Description

GCM causes the server to reject transfers from clients
that are running a version of Ascp 3.8.1 or older. When
a client requests a shorter cipher key than is configured
on the server (or in an access key that authorizes the
transfer), the transfer is automatically upgraded to the
server setting. For more information about how the
server and client negotiate the transfer cipher, see the
description of -c in the Ascp Command Reference on
page 89.

Cipher values

• none - require unencrypted transfers (not
recommended).

• aes-128, aes-192, or aes-256 - allow
transfers that use an encryption cipher key that is
as long or longer than the setting. These settings
use the CFB or GCM mode depending on the client
version and cipher requested. Supports all client
versions.

• aes-128-cfb, aes-192-cfb, or aes-256-
cfb - require that transfers use the CFB encryption
mode and a cipher key that is as long or longer than
the setting. Supports all client versions.

• aes-128-gcm, aes-192-gcm, or aes-256-
gcm - require that transfers use the GCM
encryption mode introduced in version 3.9.0 and a
cipher that is as long or longer than the setting.

For more information about server cipher
configuration, see aspera.conf - Authorization
Configuration on page 31.

policy Optional String The policy allowed for transfers that are authorized by
this access key. Value can be high, regular, fair,
low, trickle, or fixed. Aspera recommends
against setting the policy to fixed, which can result
in the transfer rate exceeding network or storage
capacity if the client also requests a high minimum
transfer rate that is not capped by the server. This can
decrease transfer performance and cause problems on
the target storage. To avoid these problems, set the
allowed policy to fair. Available as of 3.8.0.

target_rate_kbps Optional Integer The default initial rate for transfers that are authorized
by this access key, in kilobits per second. Available as
of 3.8.0.

target_rate_cap_kbpsOptional Integer The maximum target rate for transfers that are
authorized by this access key, in kilobits per second.
Available as of 3.8.0.

content_protection_secretOptional String Provide a password to require that content be
encrypted by the client (enforce client-side encryption-
at-rest) for transfers that are authorized by this access
key. Available as of 3.8.0.

 | Authentication and Authorization | 288

Element Required Type Description

preserve_timestampsOptional Boolean Set to true to preserve file access and modification
timestamps for transfers that are authorized by this
access key. The server configuration overrides the
access key configuration. Timestamp support in
object storage varies by provider; consult your object
storage documentation to determine which settings are
supported. Default is unset, such that the access key
inherits the server configuration. Available as of 3.8.0.

aggressiveness Optional Float The aggressiveness of transfers that are authorized by
this access key in claiming available bandwidth. Value
can be 0.00-1.00. Available as of 3.8.0.

server Optional JSON object The server configuration object. Available as of 3.8.0.

activity_event_loggingOptional Boolean Set to true to allow the Node API to query transfers
that are associated with this access key through the
/events endpoint. The access key configuration
overrides the server configuration. This option must be
enabled for event reporting to IBM Aspera on Cloud.
Default is unset, such that the access key inherits the
server configuration. Available as of 3.8.0.

recursive_counts Optional Boolean Set to true to enable recursive counts. The access
key configuration overrides the server configuration.
This option must be enabled for event reporting to IBM
Aspera on Cloud. Default is unset, such that the access
key inherits the server configuration. Available as of
3.8.0.

files_filelock_enabledOptional Boolean Set to true to allow the access key user
to create filelocks. Filelocks cannot be
set if filelocks are disabled on the server
(files_filelock_enabled is set to false in
aspera.conf). Available as of 3.8.0.

files_filelock_restrictionOptional String Set to none to allow the access key user to write,
delete, or rename files if they are not locked or if the
filelock was applied by the user. Set to write to allow
the access key user to write, delete, or rename files
only if the filelock was applied by the user. Available
as of 3.8.0.

Minimum Access Key Configuration - The Storage Object

The "storage" section requires different values, depending on the storage type. The following examples contain
the minimum information required to create an access key, and can be cut and pasted into a text file for editing.

Local storage

{"storage" : {
 "type" : "local",
 "path" : "path"
}}

 | Authentication and Authorization | 289

Because local storage objects are simple, you can create your access key by specifying the storage
in the command line:

 curl -ki -u nodeadmin:superP@55wOrD -X POST
 https://localhost:9092/access_keys -d'{"storage":
{"type":"local","path":"projectsproject1"}}

Amazon S3

{"storage" : {
 "type" : "aws_s3",
 "endpoint" : "s3.amazonaws.com",
 "bucket": "bucket",
 "path" : "/path",
 "storage_class" : "STANDARD|REDUCED_REDUNDANCY|
INFREQUENT_ACCESS",
 "server_side_encryption" : "AES256|AWS_KMS",
 "server_side_encryption_aws_kms_key_id" =
 "arn_encryption_key",
 "credentials" : {
 "type" : "key|iam-role|assume-role",
 "access_key_id" : "aws_access_key",
 "secret_access_key" : "secret_access_key",
 "iam_role_name" : "iam_role",
 "assume_role_arn":
 "arn:aws:iam::your_aws_account_id:role/role_name",
 "assume_role_external_id" : "external_id",
 "assume_role_session_name" : "session_name"
 }
}}

Where:

• If server side encryption is set to "AWS_KMS", then
"server_side_encryption_aws_kms_key_id" is required and is set to the ARN of
the encryption key (for example, "arn:aws:kms:us-east-1:648543846928:key/
er23525-8754-84g4-8sf7-4834ngigfre45").

• Values for credentials depend on the type of authentication you use. To authenticate with
your storage access key ID and secret, only specify "access_key_id" and "secret_access_key".
To authenticate with an IAM role, only specify "iam_role_name". To authenticate with
an assumed IAM role, only specify "assume_role_arn", "assume_role_external_id", and
"assume_role_session_name".

Azure (Block and Page Storage)

{"storage" : {
 "type" : "azure",
 "api" : "PAGE | BLOCK",
 "container" : "container",
 "path" : "path",
 "credentials" : {
 "storage_endpoint" : "blob.core.windows.net",
 "type": "key",
 "account" : "account_name",
 "key" : "storage_access_key"
 }
}}

Azure Data Lake Storage

"storage" : {

 | Authentication and Authorization | 290

 "type" : "azure-datalake",
 "path" : "container/path",
 "storage_endpoint" :
 "data_lake_store_name.azuredatalakestore.net",
 "credentials" : {
 "type" : "ClientCredential",
 "client_id" : "client_application_id",
 "refresh_url" : "https://login.windows.net/directory_id/
oauth2/token",
 "client_secret" : "secret"
 }
}

Azure SAS

{"storage" : {
 "type" : "azure_sas",
 "container" : "container",
 "path" : "path",
 "api": "BLOCK|PAGE"
 "credentials" : {
 "shared_access_signature" : "shared_url"
 }
}}

Where the "shared_access_signature" is the shared URL, such
as https://company.blob.core.windows.net/
temp?sv=2014-02-14&sr=c&sig=yfew...79uXE
%3D&st=2015-07-29T07%3A00%3A00Z&se=2018-08-06T07%3A00%3A00Z&sp=rwdl.

Azure Files

{"storage" : {
 "type" : "azure-files",
 "path" : "share/path",
 "credentials" : {
 "file_service_endpoint" :
 "https://account.file.core.windows.net/",
 "password" : "password"
 }
}}

Google Cloud Storage

Authenticated by a service account with a private key:

{"storage": {
 "type" : "google-gcs",
 "storage_endpoint" : "storage.googleapis.com",
 "bucket" : "bucket",
 "path" : "/path",
 "max_segments_per_compose" : 10000,
 "credentials": {
 "type": "service_account",
 "project_id": "project_id",
 "private_key_id": "key_id",
 "private_key": "-----BEGIN PRIVATE KEY-----key_string-----
END PRIVATE KEY-----\n",
 "client_email": "client_id@developer.gserviceaccount.com",
 }
}}

 | Authentication and Authorization | 291

Authenticated by an OAuth token:

{"storage" : {
 "type" : "google-gcs",
 "storage_endpoint" : "storage.googleapis.com",
 "bucket" : "bucket",
 "path" : "/path",
 "max_segments_per_compose" : 1024,
 "credentials" : {
 "type" : "oauth",
 "client_id" : "client_id",
 "client_secret" : "secret"
 "project_id" : "project_id",
 "access_token" : "access_token",
 "refresh_token" : "refresh_token",
 "token_expiration" : "token_lifetime_seconds"
 "auth_uri" : "https://accounts.google.com/o/oauth2/auth",
 "token_uri" : "https://accounts.google.com/o/oauth2/token",
 "auth_provider_x509_cert_url" : "https://
www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url" : "https://www.googleapis.com/robot/
v1/metadata/x509/client_id%40developer.gserviceaccount.com"
 }
}}

IBM Cloud Object Storage (COS) - S3

{"storage" : {
 "type" : "ibm-s3",
 "bucket" : "bucket",
 "path" : "/path",
 "endpoint" : "s3-api.us-
geo.objectstorage.service.networklayer.com",
 "credentials" : {
 "type" : "key",
 "access_key_id" : "key_id",
 "secret_access_key" : "key_secret"
 }
}}

4. Confirm that your access key was created and retrieve its ID by running the following command:

 curl -ki -u node_username:node_password -X GET https://localhost:9092/
access_keys

The output includes the ID and configuration of all access keys. For example, the following output lists an access
key is for local storage:

HTTP/1.1 200 OK
Cache: no-cache
Connection: close
Content-Type: application/json; charset=utf-8

[
{
 "id" : "ak_1234",
 "secret" : "j3489tht42o8y32unifhkfw38ty238h3rih",
 "token_verification_key" : "9mgr3wtl4utmf394ur2ur52jgj934864ginsrh",
 "storage" : {
 "type" : "local",
 "path" : "/"
 },

 | Authentication and Authorization | 292

 "license" : {
 "customer_id" : "customer1",
 "entitlement_id" : "43gsdi459-23r3r-w38ron-23523ro-sr82h3r8h3r"
 },
 "configuration" : {
 "transfer" : {
 "cipher" : "aes-128",
 "policy" : "fair",
 "target_rate_kbps" : 10000,
 "target_rate_cap_kbps" : 20000,
 "content_protection_secret" : "secretsecret",
 "preserve_timestamps" : false,
 "aggressiveness" : "0.00",
 },
 "server" : {
 "activity_event_logging" : true,
 "recursive_counts" : true,
 }
 },
 "files_filelock_enabled" : true,
 "files_filelock_restriction" : "none"
}
]

5. Test the access key.

If your access key is configured correctly, the following command returns the files in the path that was specified
in the access key configuration:

 curl -ki -u access_key_id:access_key_secret https://localhost:9092/
files/1/files

Basic Tokens
An Aspera basic token is created from an access key ID and secret, which authorizes a transfer user access to a
specific area of a storage and authenticates that user to the storage. Basic tokens are less restrictive than transfer
tokens. They can be used to transfer with any Aspera server that supports access keys (all but IBM Aspera on Cloud).

1. Create an access key for the storage and retrieve its ID and secret, as described in Access Key Authentication on
page 284.

2. Create a basic token by encoding the access_key_id:secret in base64.

 echo -n access_key_id:access_key_secret | openssl enc -base64

For example:

 echo -n diDeuFLcpG9IYdsvxj0SCq4mOohNJTKvp5Q2nRWjDgIA:aspera | openssl enc
 -base64

The basic token looks similar to the following:

ZGlEZXVGTGNwRzlJWWRzdnhqMFNDcTRtT29oTkpUS3ZwNVEyblJXakRnSUE6YXNwZXJh

If the basic token breaks across lines in the output, rerun the command using the -A option to remove the line
break. For example:

 echo -n access_key_id:access_key_secret | openssl enc -base64 -A

 | Authentication and Authorization | 293

3. Set the basic token as an environment variable by running the following command:

 export ASPERA_SCP_TOKEN="Basic token_string"

You can also specify the basic token on the command line by using the -W "Basic token_string".

4. Transfer content.

To upload a file, use the following syntax:

 ascp -i path/to/private_key_file -
d source_path username@hostname:destination_path

Where the path to the private key file is:

/opt/aspera/var/aspera_tokenauth_id_rsa

The destination_path can be / to indicate the top of the access key storage, or /path to indicate a subdirectory.

For example:

 ascp -i /opt/aspera/var/aspera_tokenauth_id_rsa -d testfile03
 xfer@10.0.3.4/tmp

Bearer Tokens
A bearer token is created from an access key ID, access key secret, and an SSL private-public key pair. Bearer token
authentication is required for transfers to and from IBM Aspera on Cloud, but can be used for transfers with all other
Aspera servers, too.

To create a bearer token with asnodeadmin, run the following command as a user with admin/root permissions. If you
do not specify an SSL key file or directory, you are asked if you want to create one and the filename for the private
key. The bearer token is returned in standard out.

/opt/aspera/bin/asnodeadmin -u node_username -p node_user_password \
 --bearer-create \
 --access-key access_key_id \
 --user-id user_id \
 --expires-at UTC_date \
 --group-ids id1,id2,… \
 --scope-role {user|admin} \
 --token-key-length length

Option Required Type Description

-u, --user Required String The Node API username.

-p, --pwd, --password Required String The Node API user's
password.

--bearer-create Required

--access-key Required String The ID of the access key
that is used to create the
bearer token

--user-id Required String The ID of the user who
is granted permissions to
content in the storage by /
permissions.

 | Asconfigurator Reference | 294

Option Required Type Description

--group-ids Optional String The ID of the group that
is granted permissions to
content in the storage by /
permissions.

--expires-at Optional UTC time The expiration date of
the bearer token in UTC
format. For example,
2016-06-23T13:21:58.453Z.
Default expiration is 1 hour
after token creation time.

--scope-role Optional String The access level of the
bearer token. Value can be
admin (default) or user.
admin can change the
access key configuration,
user cannot.

--token-key-length Optional Double The length of the RSA
key. Must be a power of
2 between 1024 bits (128
bytes) and 16384 bits
(2048 bytes). Default key
length is 4096 bits.

Asconfigurator Reference

The asconfigurator Utility
The asconfigurator utility is a command-line tool for interacting with aspera.conf, the file that holds most
configuration settings for your Aspera transfer server. asconfigurator comes bundled with your installation of
Enterprise Server, Connect Server, and Point-to-Point Client.

Why Use asconfigurator?

Because aspera.conf is an XML file, users can configure their transfer server by editing the file directly.
However, editing the file manually can be cumbersome and error-prone because correct syntax and structure are
strictly enforced. The asconfigurator utility enables you to edit aspera.conf through commands and parses,
validates and writes well-formed XML while also confirming that the values entered for parameters are valid.

With asconfigurator, you can edit aspera.conf quickly and safely, with one or two commands.

After Editing aspera.conf

Whether you use asconfigurator or manually edit aspera.conf, the file must be re-read and certain services
restarted in order for the changes to take effect. For detailed information, see the Administrator's Guide: Restarting
Aspera Services for your Aspera transfer server.

 | Asconfigurator Reference | 295

Syntax and Usage

General Syntax

 asconfigurator -x "command[;parameter,value;parameter,value]"

The command is either a set command for setting a configuration or a delete command for removing a
configuration. For any command you may enter one or more set of parameters and values separated by semicolons.

Note: The user executing asconfigurator commands must meet the following requirements:

• Have write access to aspera.conf.
• Not be configured to use a shell that restricts command usage (aspshell does not allow the use of

asconfigurator).

Commands for Setting Parameter Values

Command Description

set_user_data Sets data in the user section. For parameters and values,
see User, Group and Default Configurations on page
299.

set_group_data Sets data in the group section. For parameters and
values, see User, Group and Default Configurations on
page 299.

set_trunk_data Sets data in the trunk section, which contains Vlink
settings. For parameters and values, see Trunk (Vlink)
Configurations on page 304.

set_central_server_data Sets data in the central server section, which contains
Aspera Central and SOAP settings. For parameters
and values, see Central Server Configurations on page
304.

set_database_data Sets data in the database section, which contains settings
for use with Aspera Console (earlier than 3.0). For
parameters and values, see Database Configurations on
page 307.

set_server_data Sets data in the server section, which contains transfer
server feature settings for use with the Node API. For
parameters and values, see Server Configurations on
page 308.

set_http_server_data Sets data in the HTTP fallback server section. For
parameters and values, see HTTP Server Configurations
on page 306.

set_client_data Sets data from the client section, which holds client
transfer settings. For parameters and values, see Client
Configurations on page 312.

set_node_data Sets data in the default section, which holds the "global"
node settings. For parameters and values, see User,
Group and Default Configurations on page 299.

 | Asconfigurator Reference | 296

Note: To reset a parameter to its default value, you can use a set command for the parameter with a value of
AS_NULL.

Commands for Deleting Configurations
Delete commands can be used for removing a user, group or Vlink configuration.

Command Description

delete_user Deletes a user's configurations.

delete_group Deletes a group's configurations.

delete_trunk Deletes a Vlink's configurations.

Modifying Files other than aspera.conf
The general syntax above modifies the default aspera.conf. You can also run asconfigurator to modify an
XML file of your choice instead of aspera.conf.

The command below takes a path to a file to modify. If the file does not exist, it is created.

 asconfigurator -x "command[;parameter,value;parameter,value]" /path/to/file

The command below takes paths to two files. The first file is used as a base, and the modifications are written to the
second file.

 asconfigurator -x "command[;parameter,value;parameter,value]" /path/to/
file /path/to/file1

Using Fitness Rules

Fitness rules allow you to apply configuration settings conditionally when specified rules are met. Fitness rules are
added to aspera.conf configurations as attributes within XML tags, such as the following:

<value fitness="peer_ip"(192.168.15.81)>allow</value>

In the example above, the parameter is set to allow if the peer IP address is 192.168.15.81.

Fitness Rule Syntax:

 asconfigurator -x
 "command;parameter,value,fitness,fitness_rule(fitness_template)"

Fitness Rule Example Description

cookie() cookie(wilcard_template) The parameter value is applied if the
cookie passed from the application
matches the specified template.

peer_ip() peer_ip(ip_address/netmask) The parameter value is applied if the
IP address of the peer (the client)
matches the specified IP address and
optionally, its netmask.

peer_domain() peer_domain(wilcard_template) The parameter value is applied if
the domain of the peer (the client)
matches the specified template.

 | Asconfigurator Reference | 297

For example, to set a peer_ip fitness rule on the authorization_transfer_in_value configuration so
that incoming transfers from 192.168.16.70 are denied, run the following command:

 asconfigurator -x
 "set_node_data;authorization_transfer_in_value,deny,fitness,peer_ip(192.168.16.70)"

Examples
Below are some example commands and usage tips.

Note: You can also see sample commands for nearly all configurations by running the following asuser command:

 asuserdata -+

• Setting the docroot of your transfer user

 asconfigurator -x "set_user_data;user_name,transferuser;absolute,/path/
to/docroot"

• Enabling HTTP Fallback using HTTPS on port 8444.

 asconfigurator -x "set_http_server_data;enable_https,true"
 asconfigurator -x "set_http_server_data;https_port,8444"

Note: You can also chain two or more parameters to set within the same command. The two commands above
can be combined as follows (separated by semi-colons):

 asconfigurator -x
 "set_http_server_data;enable_https,true;https_port,8444"

• Setting the global inbound target transfer rate to 80Mb/s

 asconfigurator -x
 "set_node_data;transfer_in_bandwidth_flow_target_rate_default,80000"

• Getting all the configurations set on the group aspera_group

 asuserdata -g aspera_group

• Creating and enabling a Vlink with an ID of 101 and a capacity of 100Mb/s

 asconfigurator -x
 "set_trunk_data;id,101;trunk_on,true;trunk_capacity,100000"

• Allowing only encrypted transfers

 asconfigurator -x
 "set_node_data;transfer_encryption_allowed_cipher,aes-128"

• Setting the hostname of the Aspera server to example.com

 asconfigurator -x "set_server_data;server_name,example.com"

• Setting the global token life back to the default value of 24 hours (86400 seconds)

Note: You can reset any setting to its default value by setting it to AS_NULL

 asconfigurator -x "set_node_data;token_life_seconds,AS_NULL"

 | Asconfigurator Reference | 298

Reading Output
The output for asconfigurator commands are structured and display feedback about the success or failure of
each command.

Set commands
When successful, set commands print success to standard out:

 asconfigurator -x "set_server_data;enable_http,true"
success

When unsuccessful, set commands print failure to standard out, and an explanation of why they failed:

 asconfigurator -x "set_server_data;enable_http,true"
failure
Syntax Error: Syntax error. Valid values are "assert_current","server"
 or"option_mask", got "enable_htt"

Reading aspera.conf configuration settings with asuserdata

You can view the current configuration settings by section and all the possible parameters with their default values
and corresponding asconfigurator syntax by running asuserdata.

 asuserdata [options] [commands]

The asuserdata command must be run either from within the Aspera bin directory, or with the full path in front
of it.

Multiple command flags can be specified per call. The option flags modify the output of command flags that follow
them (but not command flags that precede them).

Command Flags

Command Flag Description

-u user Outputs configurations set in the user section for the specified user.

-g group Outputs configurations set in the group section for the specified group.

-d Outputs configurations set in the database section.

-c Outputs configurations set in the central server section.

-t Outputs configurations set in the HTTP server section.

-a Outputs configurations set in all sections except the user and group section.

-s Outputs the default specification for aspera.conf configurations. Similar to -+ but
does not show asconfigurator commands.

-+ Outputs the default specification for aspera.conf configurations and corresponding
asconfigurator commands for each parameter.

Option Flags

Option Flag Description

-x Formats output as XML.

-b Formats output in human readable language.

 | Asconfigurator Reference | 299

Note: To see all asuserdata command options, run asuserdata -h.

User, Group and Default Configurations

General Syntax

This collection of commands configures settings for transfer authorization, bandwidth, and encryption. These settings
can apply to particular users, users in particular groups, or globally to all users.

The syntax of set commands for users, groups and global settings are:

 asconfigurator -x "set_user_data;user_name,username;parameter,value"
 asconfigurator -x "set_group_data;group_name,groupname;parameter,value"
 asconfigurator -x "set_node_data;parameter,value"

Setting or getting user/group data requires you to specify the username or group name as the first parameter of the
asconfigurator command.

Note: Not all available parameters are listed below, only the most commonly used. To view a complete list, run the
following command:

 asuserdata -+

Transfer Authorizations
absolute

The docroot path of a user.

Values: (String)

authorization_transfer_in_value

Incoming transfer authorization. The token value only allows transfers initiated with valid tokens.

Values: allow (default), deny, token

authorization_transfer_out_value

Outgoing transfer authorization. The token value only allows transfers initiated with valid tokens.

Values: allow (default), deny, token

authorization_transfer_in_external_provider_url

The URL of the external authorization provider for incoming transfers.

Values: (String)

authorization_transfer_out_external_provider_url

The URL of the external authorization provider for outgoing transfers.

Values: (String)

authorization_transfer_in_external_provider_soap_action

The SOAP action required by the external authorization provider for incoming transfers.

Values: (String)

authorization_transfer_out_external_provider_soap_action

The SOAP action required by the external authorization provider for outgoing transfers.

Values: (String)

token_encryption_type

The cipher used to generate encrypted authorization tokens.

 | Asconfigurator Reference | 300

Values: aes-128 (default), aes-192, aes-256

token_encryption_key

The secret passphrase used to generate encrypted authorization tokens. Use instead of
token_encryption_keyfile.

Values: (String)

token_life_seconds

The length of time a token is valid in seconds. The default value is 86400 seconds (24 hours).

Values: (Number)

Transfer Bandwidth Policies
transfer_in_bandwidth_aggregate_trunk_id

The ID of the Vlink to apply to incoming transfers. A value of 0 disables the Vlink.

Values: (Number 0-255)

transfer_out_bandwidth_aggregate_trunk_id

The ID of the Vlink to apply to outgoing transfers. A value of 0 disables the Vlink.

Values: (Number 0-255)

transfer_in_bandwidth_flow_target_rate_cap

The maximum value to which the target rate for incoming transfers can be set.

Values: (Number)

transfer_out_bandwidth_flow_target_rate_cap

The maximum value to which the target rate for outgoing transfers can be set (in Kbps).

Values: (Number)

transfer_in_bandwidth_flow_target_rate_default

The default value to which the target rate for incoming transfers is set (in Kbps).

Values: (Number)

transfer_out_bandwidth_flow_target_rate_default

The default value to which the target rate for outgoing transfers is set (in Kbps).

Values: (Number)

transfer_in_bandwidth_flow_target_rate_lock

A value of false allows users to adjust the transfer rate for incoming transfers. A value of true
prevents users from adjusting the transfer rate for incoming transfers.

Values: false (default), true

transfer_out_bandwidth_flow_target_rate_lock

A value of false allows users to adjust the transfer rate for outgoing transfers. A value of true
prevents users from adjusting the transfer rate for outgoing transfers.

Values: false (default), true

transfer_in_bandwidth_flow_min_rate_cap

The maximum value to which the minimum rate for incoming transfers can be set (in Kbps).
Transfers cannot go slower than the minimum rate.

Values: (Number)

transfer_out_bandwidth_flow_min_rate_cap

The maximum value to which the minimum rate for outgoing transfers can be set (in Kbps).
Transfers cannot go slower than the minimum rate.

 | Asconfigurator Reference | 301

Values: (Number)

transfer_in_bandwidth_flow_min_rate_default

The default value to which the minimum rate for incoming transfers is set (in Kbps). Transfers
cannot go slower than the minimum rate.

Values: (Number)

transfer_out_bandwidth_flow_min_rate_default

The default value to which the minimum rate for outgoing transfers is set (in Kbps). Transfers
cannot go slower than the minimum rate.

Values: (Number)

transfer_in_bandwidth_flow_min_rate_lock

A value of false allows users to adjust the minimum rate for incoming transfers. A value of true
prevents users from adjusting the minimum rate for incoming transfers.

Values: false (default), true

transfer_out_bandwidth_flow_min_rate_lock

A value of false allows users to adjust the minimum rate for outgoing transfers. A value of true
prevents users from adjusting the minimum rate for outgoing transfers.

Values: false (default), true

transfer_in_bandwidth_flow_policy_default

The default bandwidth policy for incoming transfers. The bandwidth policy determines how
transfers adjust their rates according to network conditions.

Values: fair (default), fixed, high, low

transfer_out_bandwidth_flow_policy_default

The default bandwidth policy for outgoing transfers. The bandwidth policy determines how
transfers adjust their rates according to network conditions.

Values: fair (default), fixed, high, low

transfer_in_bandwidth_flow_policy_lock

A value of false allows users to adjust the bandwidth policy for incoming transfers. A value of true
prevents users from adjusting the bandwidth policy for incoming transfers.

Values: false (default), true

transfer_out_bandwidth_flow_policy_lock

A value of false allows users to adjust the bandwidth policy for outgoing transfers. A value of true
prevents users from adjusting the bandwidth policy for outgoing transfers.

Values: false (default), true

transfer_in_bandwidth_flow_policy_allowed

The allowed bandwidth policies for incoming transfers. The chosen value and any policy less
aggressive will be allowed. In order from most to least aggressive the policies are fixed, high, fair
and low.

Values: any (default), high, fair, low

transfer_out_bandwidth_flow_policy_allowed

The allowed bandwidth policies for outgoing transfers. The chosen value and any policy less
aggressive will be allowed. In order from most to least aggressive the policies are fixed, high, fair
and low.

Values: any (default), high, fair, low

 | Asconfigurator Reference | 302

Transfer Encryption
transfer_encryption_allowed_cipher

The type of transfer encryption accepted. When set to 'any' both encrypted and unencrypted
transfers are allowed.

Values: any (default), aes-128, aes-192, aes-256, none

transfer_encryption_fips_mode

Whether transfers should be encrypted with a FIPS 140-2 certified encryption module.

Values: false (default), true

content_protection_required

Whether transferred content should be left encrypted at the destination.

Values: false (default), true

content_protection_strong_pass_required

Whether a strong passphrase is required for content protection (6 characters long, at least one letter,
number and special symbol).

Values: false (default), true

Transfer File System Options
resume_suffix

The extension of files used to store metadata and enable resumption of partially completed transfers.
Include a '.' in the suffix, such as: .aspera

Values: (String), default .aspx

preserve_attributes

The file creation policy. When set to none the timestamps of source files are not preserved. When
set to times the timestamps of source files are preserved at the destination.

Values: use client setting (default), none, times

overwrite

Whether Aspera clients are allowed to overwrite existing files on the server.

Values: allow (default), deny

file_manifest

A file manifest is a file containing a list of everything transferred in a given transfer session. When
set to text file manifests are generated.

Values: none (default), text, disable

file_manifest_path

The location (path) where file manifests are created.

Values: (Absolute path)

pre_calculate_job_size

The policy of calculating total job size before a transfer. If set to any, the client configuration is
followed. If set to no, job size calculation is disabled before transferring.

Values: any (default), no, yes

replace_illegal_chars

Convert restricted Windows characters in file and directory names to a non-reserved character of
your choice.

Values: (Non-reserved character)

file_filters

 | Asconfigurator Reference | 303

Exclude and include files or directories with the specified pattern in the transfer. Each entry starts
with a separator, preferably "|". Add multiple entries for more inclusion and exclusion patterns.
To specify an exclusion, add '- ' (- and whitespace) at the beginning of the pattern, such as |-
2016. To specify an inclusion, add '+ ' (+ and whitespace) at the beginning of the pattern, such
as |+ *.jpg.

Two symbols can be used in the setting of patterns:

* (Asterisk) Represents zero to many characters in a string, for example, *.tmp matches .tmp and
abcde.tmp.

? (Question Mark) Represents one character, for example, t?p matches tmp but not temp.

Specify multiple filters as a delimited list: |+ *.jpg|- 2016*.

Values: (String)

partial_file_suffix

Extension to be added to the names of files that are currently only partially transferred. Include a '.'
in the suffix, such as: .aspera

Values: (String)

file_checksum

Type of checksum to compute while reading a file. Checksums are used to verify that file contents
on the destination match what was read on the destination.

Values: any (default), md5, sha1, sha256, sha384, or sha512

async_enabled

Whether async is enabled on the server.

Values: true (default), false

async_connection_timeout

The time period async waits to establish a connection, in seconds.

Values: (Number)

async_session_timeout

The time period async waits for an unresponsive session, in seconds.

Values: (Number)

Document Root Options
absolute

The absolute path of the document root (docroot), which is the area of the file system that is
accessible by Aspera users.

Values: (Absolute path)

read_allowed

Whether users are allowed to transfer files from the docroot (in other words, download from the
docroot).

Values: true (default), false

write_allowed

Whether users are allowed to transfer files to the docroot (in other words, upload to the docroot).

Values: true (default), false

dir_allowed

Whether users are allowed to browse files in the docroot.

Values: true (default), false

 | Asconfigurator Reference | 304

file_restriction

Restrict the files that are allowed for transfers. Restrictions are set as wildcard templates. The first
character is a separator (preferably a "|") which can be used to set multiple restrictions. Restrictions
are processed in order and according to the following rules:

• If a restriction starts with a "!", any files that match the rest of the wildcard template are rejected.
• If a restriction does not start with a "!", then any file that matches is allowed
• Any other files are rejected

For example: |/home/aspera/*|home/janedoe/*

Values: (Character separator)(Wildcard template)[(Character separator)(Wildcard template)]

Trunk (Vlink) Configurations

General Syntax

This collection of commands configures settings related to Vlinks, which are aggregate bandwidth caps applied to
transfer sessions.

The syntax for setting trunk configurations is the following :

 asconfigurator -x "set_trunk_data;id,trunk_id;parameter,value"

Setting or getting trunk data requires you to specify the ID number of the Vlink as the first parameter of the
asconfigurator command.

Note: Not all available parameters are listed below, only the most commonly used. To view a complete list, run the
following command:

 asuserdata -+

Vlink Configurations
trunk_id

The ID of the Vlink.

Values: (Number 1-255)

trunk_on

Whether the Vlink is enabled (true) or disabled (false).

Values: true, false

trunk_capacity

The bandwidth capacity of the Vlink (in Kbps).

Values: (Number)

Central Server Configurations

General Syntax

This collection of commands configures settings related to Aspera Central, which is a service that manages transfer
server SOAP features and historical transfer data.

 | Asconfigurator Reference | 305

The syntax for setting central server parameters is the following:

 asconfigurator -x "set_central_server_data;parameter,value"

Note: Not all available parameters are listed below, only the most commonly used. To view a complete list, run the
following command:

 asuserdata -+

Central Server Configurations
address

The network interface address on which the Aspera Central listens. The default 127.0.0.1 enables
the transfer server to accept transfer requests from the local computer. Setting the value to 0.0.0.0
allows the transfer server to accept transfer requests on all network interfaces.

Values: (Network interface address, default 127.0.0.1)

port

The port on which the Aspera Central service listens.

Values: (Number 1-65535, default 40001)

persistent_store

Whether to store transfer history locally. This should be enabled if the transfer server will be used
with Faspex or Shares.

Values: enable (default), disable

persistent_store_max_age

The time in seconds to retain local transfer history data.

Values: (Number, default 86400)

persistent_store_on_error

Whether the Central server should terminate (exit) when an error occurs while writing to the local
transfer history database, or ignore the error.

Values: ignore (default), exit

compact_on_startup

Whether to compact the local transfer history database on startup (note that this may take awhile).

Values: ignore (default), exit

files_per_session

The number of file names to be recorded for any transfer session. For example, if the value is set
to 50 the first 50 filenames will be recorded for any session. A setting of 0 logs all filenames. The
session will still record the number of files transferred, and the number of files completed, failed or
skipped.

Values: (Number, default 1000000)

ignore_empty_files

Whether to block the logging of zero byte files (true) or not (false).

Values: true (default), false

ignore_skipped_files

Whether to block the logging of skipped files (true) or not (false).

Values: true (default), false

ignore_no_transfer_files

 | Asconfigurator Reference | 306

Whether to block the logging of files that were not transferred because they already exist at the
destination (true) or not (false).

Values: true (default), false

HTTP Server Configurations

General Syntax

This collection of commands configures settings related to the Aspera HTTP server, which enables the HTTP
Fallback feature.

The syntax for setting HTTP server parameters is the following :

 asconfigurator -x "set_http_server_data;parameter,value"

Note: Not all available parameters are listed below, only the most commonly used. To view a complete list, run the
following command:

 asuserdata -+

HTTP Server Configurations
cert_file

The absolute path to an SSL certificate file to use for HTTP Fallback. If left blank the default
certificate that came with your transfer server installation will be used.

Values: (Absolute path)

key_file

The absolute path to an SSL key file to use for HTTP Fallback. If left blank the default key file that
came with your transfer server installation will be used.

Values: (Absolute path)

bind_address

The network interface on which the HTTP Fallback server listens. The default value 0.0.0.0 allows
the HTTP Fallback server to accept transfer requests on all network interfaces.

Values: (Network interface address, default 0.0.0.0)

restartable_transfers

Whether interrupted transfers should resume at the point of interruption (true) or not (false).

Values: true (default), false

session_activity_timeout

The amount of time in seconds that the HTTP Fallback server will wait before canceling a transfer
session that can't communicate with the client. A value of 0 means the HTTP Fallback server will
never timeout due to lack of communication from the client.

Values: (Number, default 20])

http_port

The port on which the HTTP server listens.

Values: (Number 1-65535, default 8080)

https_port

The port on which the HTTPS server listens.

Values: (Number 1-65535, default 8443)

 | Asconfigurator Reference | 307

enable_http

Whether HTTP Fallback is enabled for failed UDP transfers to continue over HTTP (true) or not
(false).

Values: true (default), false

enable_https

Whether HTTP Fallback is enabled for failed UDP transfers to continue over HTTPS (true) or not
(false).

Values: true (default), false

Database Configurations

General Syntax

This collection of commands configures settings related to the MySQL database that stores transfer data (for use with
Aspera Console before version 3.0).

The syntax for setting database parameters is the following:

 asconfigurator -x "set_database_data;parameter,value"

Database Configurations
server

The IP address of the database server (or the IP address of the Aspera Console server).

Values: (IP address, default 127.0.0.1)

port

The port that the database server listens on. The default value for an Aspera Console installation is
4406.

Values: (Number 1-65535, default 4406)

user

The user login for the database server.

Values: (String)

password

The password for the database server.

Values: (String)

database_name

The name of the database used to store Aspera transfer data.

Values: (String)

threads

The number of parallel connections used for database logging.

Values: (Number, default 1)

exit_on_database_error

Whether all transfers are stopped on a database error (true) or not (false).

Values: false (default), true

session_progress

 | Asconfigurator Reference | 308

Whether transfer status should be logged at a given interval (true) or not (false). Transfer status
includes number of files transferred, bytes transferred, among other stats.

Values: true (default), false

session_progress_interval

The frequency at which an Aspera node logs transfer session data, in seconds.

Values: (Number 1-65535, default 1)

file_events

Whether complete file paths and file names should be logged (true) or not (false). Performance
may be impacted when setting this to true for transfers of thousands of files.

Values: true (default), false

file_progress

Whether file status, such as bytes transferred, should be logged (true) or not (false).

Values: true (default), false

file_progress_interval

The frequency with which an Aspera node logs file transfer data, in seconds.

Values: (Number 1-65535, default 1)

files_per_session

The number of file names to be recorded for any transfer session. For example, if the value is set
to 50 the first 50 filenames will be recorded for any session. A setting of 0 logs all filenames. The
session will still record the number of files transferred, and the number of files completed, failed or
skipped.

Values: (Number, default 0)

file_progress_interval

The frequency at which an Aspera node logs file transfer data, in seconds.

Values: (Number 1-65535, default 1)

ignore_empty_files

Whether to block the logging of zero byte files (true) or not (false).

Values: false (default), true

ignore_skipped_files

Whether to block the logging of skipped files (true) or not (false).

Values: false (default), true

ignore_no_transfer_files

Whether to block the logging of files that were not transferred because they already exist at the
destination (true) or not (false).

Values: false (default), true

Server Configurations

General Syntax

This collection of commands configures settings related to transfer server features such as the Aspera Node API
service (asperanoded), Aspera Watch Service, Aspera Watchfolders, and Aspera Proxy.

 | Asconfigurator Reference | 309

The syntax for setting server parameters is the following:

 asconfigurator -x "set_server_data;parameter,value"

Note: Not all available parameters are listed below, only the most commonly used. To view a complete list, run the
following command:

 asuserdata -+

Transfer Server
server_name

The hostname or IP address of this Aspera transfer server.

Values: (String)

transfers_multi_session_default

The default value for the number of sessions in a multi-session transfer.

Values: (Number, default 1)

transfers_retry_duration

The time duration during which transfer retries are attempted.

Values: (Time value, default 20m)

transfers_retry_all_failures

Whether a transfer should be retried after all failures (true) or not (false). If set to false,
transfers won't be retried for failured deemed unretryable, such as for permission failures.

Values: false (default), true

http_port

The HTTP port on which the asperanoded service listens.

Values: (Number 1-65535, default 9091)

https_port

The HTTPS port on which the asperanoded service listens.

Values: (Number 1-65535, default 9092)

enable_http

Whether HTTP is enabled for asperanoded on the port configured for http_port (true) or
not (false).

Values: false (default), true

enable_https

Whether HTTPS is enabled for asperanoded on the port configured for https_port (true)
or not (false).

Values: true (default), false

cert_file

The full path of the SSL certificate file for asperanoded.

Values: (Absolute file path)

ssh_host_key_fingerprint

The SSH key fingerprint used by Aspera clients to determine the server's authenticity. The client
confirms a server's authenticity by comparing the server's fingerprint with the trusted fingerprint.

Values: (String)

 | Asconfigurator Reference | 310

ssh_host_key_path

The path to the transfer server's public or private key file, from which the fingerprint is extracted
automatically.

Values: (Absolute file path)

ssh_port

The port to use for SSH authentication of transfer users.

Values: (Number, default 33001)

max_response entries

The maximum number of items the Node API will return on calls.

Values: (Number, default 1000)

max_response time_sec

The time limit in seconds before an unresponsive Node API response times out.

Values: (Number, default 10)

db_dir

The path to the directory where the redis database file for the Node API is saved.

Values: (Absolute path)

db_port

The port on which the redis database for the Node API listens.

Values: (Number, default 31415)

activity_logging

Whether transfer logs should be queriable via the Node API (true) or not (false).

Values: false (default), true

watchd_enabled

Whether the Watchfolder (asperawatchd) service is enabled (true) or not (false).

Values: false (default), true

ssl_ciphers

The list of SSL encryption ciphers that the server will allow. Each cipher is separated by a colon (:).
See the server documentation for the default list of ciphers.

Values: (Colon-delimited list)

ssl_protocol

The minimum allowed SSL protocol. Higher security protocols are always allowed.

tlsv1 (default), tlsv1.1, tlsv1.2

Aspera Proxy
proxy_enabled

Whether forward proxy is on (true) or off (false).

Values: false (default), true

proxy_authentication

Whether to enable the authentication requirement for the forward proxy server (true) or not
(false).

Values: false (default), true

proxy_bind_ip_address

 | Asconfigurator Reference | 311

The IP address that the forward proxy server binds to (also the IP address that the client connects
to). 0.0.0.0 allows the proxy server to bind to all available interfaces.

Values: (IP address, default 0.0.0.0)

proxy_bind_ip_netmask

The netmask that the forward proxy server binds to (also the netmask that the client connects to).

Values: (String)

proxy_port_range_low

The lower bound of the port range for the forward proxy.

Values: (Number, default 5000])

proxy_port_range_high

The upper bound of the port range for the forward proxy.

Values: (Number, default 10000)

proxy_cleanup_interval

The interval in seconds at which the forward proxy server scans and cleans up expired sessions.

Values: (Number, default 0)

proxy_keepalive_internal

The interval in seconds at which the ascp client sends keep-alive requests. This option is propogated
to the client.

Values: (Number, default 0)

proxy_session_timeout

The interval in seconds after which a session times out if no keep-alive updates have been received.

Values: (Number, default 0)

rproxy_rules_rule_proxy_port

The reverse proxy server port that receives UDP traffic.

Values: (Number, default 33001)

rproxy_rules_rule_host

The IP address and SSH port of the internal destination. If unspecified the default port is 22.

Values: (IP address and port)

rproxy_rules_rule_hosts

The list of IP addresses and SSH ports for the load-balancing feature. The first character
is a separator (preferably a "|") which can be used to set multiple hosts. For example: |
10.0.23.123:33001|10.0.23.124:33001|10.0.23.125:33001

Values: (Character separator)(IP address)[(Character separator)(IP address)]

rproxy_rules_rule_squash_user

The account name used for authenticating with the internal server.

Values: (String)

rproxy_rules_rule_key_file

The path to the SSH private key for authenticating with the internal server.

Values: (Absolute path)

rproxy_rules_rule_udp_port_reuse

Whether the reverse proxy should reuse the UDP port (true) or not (false). Setting this to false
enables reverse proxy to create iptables rules that increment the UDP port number that clients
connect to, and the internal server's UDP port to which transfers are routed to.

 | Asconfigurator Reference | 312

Values: true (default), false

rproxy_rules_rule_balancing

The method for distributing transfers as part of the load balancing feature. Currently round-
robin is the only supported method.

Values: round-robin (default)

rproxy_enabled

Whether reverse proxy is on (true) or off (false).

Values: false (default), true

rproxy_log_level

The level of debug messages to log for reverse proxy.

Values: 0 (default), 1, 2

rproxy_log_directory

The reverse proxy server log file location. If no value is set, the proxy logs to syslog.

Values: (Absolute path)

Client Configurations

General Syntax Guidelines

This collection of commands configures settings related to client transfers, which are transfers you initiate with ascp
on the command line or the GUI of your product.

The syntax for setting client parameters is the following:

 asconfigurator -x "set_client_data;parameter,value"

Note: Not all available parameters are listed below, only the most commonly used. To view a complete list, run the
following command:

 asuserdata -+

Parameters and Values
transport_cipher

The encryption cipher to use for transfers.

Values: aes-128 (default), aes-192, aes-256, none

ssl_ciphers

The list of SSL encryption ciphers that the server will allow. Each cipher is separated by a colon (:).
See the server documentation for the default list of ciphers.

Values: (Colon-delimited list)

ssl_protocol

The minimum allowed SSL protocol. Higher security protocols are always allowed.

Values: tlsv1 (default), tlsv1.1, tlsv1.2

default_ssh_key

The path to the default SSH key that should be used in command line transfers.

Values: (Absolute path)

 | Troubleshooting | 313

Troubleshooting

Solutions to common problems.

Clients Can't Establish Connection
Learn how to troubleshoot client issues with connecting to HST Server.

1. Test SSH ports and HTTP/HTTPS ports.

a) On the client computer, run the following command:

 telnet server_ip_address port

For example, to test connection to 10.0.1.1 through TCP/33001, you run the following command:

 telnet 10.0.1.1 33001

b) If the client cannot establish connections to the ports, verify the port number and the firewall configuration of
HST Server. Also make sure that the client firewall allows outbound connections.

2. Test UDP ports.

If you can establish an SSH connection but not run a FASP file transfer, there might be a firewall blockage of
FASP's UDP port.

3. Verify SSH service status

If there is no firewall blockage between the client and your HST Server, on the client machine, try establishing a
SSH connection: (HST Server address: 10.0.1.1, TCP/33001)

 ssh aspera_user_1@10.0.1.1 -p 33001

If the SSH service runs normally, the client should see a message prompting to continue the connection or for
a password. However, if you see a "Connection Refused" message, which indicates that the SSH service isn't
running, review your SSH service status. Ignore the "permission denied" message after entering the password,
which is discussed in next steps.

4. Applied authentication method is enabled in SSH

If you can establish a SSH connection, but it returns "permission denied" message, the SSH Server on your HST
Server might have password authentication disabled:

Permission denied (publickey,keyboard-interactive).

Open your SSH Server configuration file with a text editor:

/etc/ssh/sshd_config

To allow public key authentication, add or uncomment the PubkeyAuthentication yes. To allow password
authentication, add or uncomment PasswordAuthentication yes. Here is a configuration example:

...
PubkeyAuthentication yes
PasswordAuthentication yes
...

To activate your changes, restart the SSH server.

5. Restart the SSH server to apply new settings.

 | Troubleshooting | 314

Restarting your SSH server does not affect currently connected users.

$ sudo stopsrc -s sshd
$ sudo startsrc -s sshd

6. Verify that the user credentials are correct, and the user has sufficient access permissions to their docroot

a) Attempt to establish an SSH connection:

 ssh username@server_ip_address -p port

For example:

$ ssh aspera_user_1@10.0.1.1 -p 33001

b) Enter the user's password.

If you see "Permission denied" message, you may have a wrong user credentials, or the user doesn't have
sufficient access permissions to its docroot.

7. Verify that the user is set up for web UI (deprecated) authentication

HST Server uses Apache's authentication to authorize web UI access. If the client can establish SSH connections,
but cannot authenticate to the web UI, the user account might not be configured for web UI correctly. To do so,
run the following command:

$ htpasswd /opt/aspera/etc/webpasswd username

Important: Use the -c option ONLY if this is the first time running htpasswd to create the webpasswd file. Do
not use the -c option otherwise.

Error: Session Timeout During Ascp Transfers
If you attempt an Ascp transfer over a network with high latency or to/from storage with slow read/write, you might
receive a timeout error message. You can increase the timeout to allow your transfers to complete.

The message is similar to the following:

ERR Failed to receive Close Session, read timed out (errno=110) timeout:120,
 rsize=0

To increase the timeout, follow these steps:

1. Run the following asconfigurator command:

 asconfigurator -x "set_node_data;session_timeout_sec,time"

where time is the desired time in seconds before timeout. This creates the following text in aspera.conf:

<default>
 <session_timeout_sec>time</session_timeout_sec>
</default>

2. Alternatively, manually edit aspera.conf.

The aspera.conf configuration file is in the following location:

/opt/aspera/etc/aspera.conf

 | Troubleshooting | 315

Node API Transfers of Many Small Files Fails
Ascp transfers that are started through the Node API or Watch Folders to or from servers that have Unix-like OS can
fail when transferring many (millions) of small files because the Redis database exceeds available number of file
descriptors.

To increase the maximum number of file descriptors from the default of 1024 to a larger value, such as 1,000,000, run
the following command:

$ ulimit -Sn 10000000

Logs Overwritten Before Transfer Completes
The logs of long transfers of many (millions) of files can be overwritten before the session completes, potentially
deleting useful troubleshooting information if an error or failure occurs. To avoid this problem, set the log size to a
larger value than the default of 10 MB. For information on other logging configuration options, see Server Logging
Configuration for Ascp and Ascp 4 on page 69.

Logging settings are configured by running asconfigurator commands (recommended) or by manually editing
aspera.conf.

To increase log size by using asconfigurator:

Run the following command:

 asconfigurator -x "set_logging_data;log_size,size_mb"

To increase log size by manually editing aspera.conf:

1. Open aspera.conf in a text editor run with administrator privileges.

/opt/aspera/etc/aspera.conf

2. Add the <logging> section to the <default> section:

...
<default>
 <file_system>...</file_system>
 <logging>
 <log_size>size</log_size>
 </logging>
</default>
...

Where size is the log size in MB.

3. Save your changes.

4. Validate the XML form of aspera.conf:

 asuserdata -v

Disabling SELinux
SELinux (Security-Enhanced Linux), an access-control implementation, can prevent web UI access.

To disable SELinux:

1. Open the SELinux configuration file: /etc/selinux/config.

 | Appendix | 316

2. Locate the following line:

SELINUX=enforcing

3. Change the value to disabled:

SELINUX=disabled

Save your changes and close the file.

4. On the next reboot, SELinux is permanently disabled. To dynamically disable it before the reboot, run the
following command:

setenforce 0

Appendix

Restarting Aspera Services
When you change product settings, you might need to restart certain Aspera services in order for the new values to
take effect.

IBM Aspera Central

If asperacentral is stopped, or if you have modified the <central_server> or <database> sections in
aspera.conf, then you need to restart the service.

Run the following command in a Terminal window to restart asperacentral:

 /etc/rc.d/init.d/asperacentral stop
 /etc/rc.d/init.d/asperacentral start

IBM Aspera NodeD

Restart asperanoded if you have modified any setting in aspera.conf.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

IBM Aspera HTTPD

Restart asperahttpd if you have modified any setting in aspera.conf.

Run the following commands to restart asperahttpd:

 /etc/rc.d/init.d/asperahttpd restart

Docroot vs. File Restriction
A transfer user's access to the server's file system can be restricted by configuring a docroot or a file restriction.
Though similar, certain Aspera features require that the transfer user have a file restriction rather than a docroot.

Note: A configuration (global, group, or user) can have a docroot or a file restriction; configurations with both are
not supported.

 | Appendix | 317

Docroot File Restriction

Required for • Server-side encryption-at-rest
(docroot in URI format)

• Connecting the node to IBM
Aspera Faspex, IBM Aspera
Shares, IBM Aspera Console,
or IBM Aspera Application for
Microsoft SharePoint

• Complex file-system access rules
• Creating access keys with the

Node API
• Connecting the node to IBM

Aspera on Cloud

Syntax An absolute pathname that can
include a substitutional string.
Supported strings:

• $(name)

• $(home)

The pathname can be in URI format;
special characters must be URL-
encoded.

A set of file system filters that use
"*" as a wildcard and "!" to indicate
"exclude". Paths are in URI format;
special characters in a URI must be
URL-encoded.

Access to a file is rejected unless the
file matches the restrictions, which
are processed in the following order:

• If a restriction starts with "!", the
user is not allowed to access any
files that match the rest of the
restriction.

• If a restriction does not start with
"!", the user can access any file
that matches the filter.

• If one or more restrictions do not
start with "!", the user can access
any file that matches any one of
the no-"!" restrictions.

Examples • As an absolute path:

/docs

• With a substitutional string:

/users/$(name)

• As a URI:

s3://s3.amazonaws.com/
my_bucket

or

file:///docs

• For a specific folder:

file:////docs/*

• For the drive root:

file:///c*

• For ICOS-S3 storage:

s3://my_vault/*

• To exclude access to key files:

!*.key

For more examples, see Getting
Started with Watch Folders on page
154

How to set See Setting Up Transfer Users on
page 24.

See Getting Started with Watch
Folders on page 154.

URL Encoding Characters

The following reserved characters are often included in passwords and secret keys:

Character ! # $ & ' () * +

 | Appendix | 318

URL
encoded

%21 %23 %24 %26 %27 %28 %29 %2A %2B

Character . / : ; = ? @ []

URL
encoded

%2C %2F %3A %3B %3D %3F %40 %5B %5D

To URL encode other characters and to encode entire strings at once, you may use the online tool:

http://www.url-encode-decode.com/

Select UTF-8 as the target.

Aspera Ecosystem Security Best Practices
Your Aspera applications can be configured to maximize system and content security. The following sections
describe the recommended settings and practices that best protect your content when using IBM Aspera High-Speed
Transfer Server and IBM aspera High-Speed Transfer Endpoint.

Contents

Securing the Systems that Run Aspera Software

Securing the Aspera Application

Securing Content in your Workflow

Securing the Systems that Run Aspera Software

The systems that run Aspera software can be secured by keeping them up to date, by applying security fixes, and by
configuring them using the recommended settings.

Updates

Aspera continually improves the built-in security of its products, as do the producers of third-party components used
by Aspera, such as Apache, Nginx, and OpenSSH. One of the first lines of defense is keeping your products up to
date to ensure that you are using versions with the latest security upgrades:

• Keep your operating system up to date.
• Keep your Aspera products up to date.
• If using, keep OpenSSH up to date. The server security instructions require that OpenSSH 4.4 or newer (Aspera

recommends 5.2 or newer) is installed on your system in order to use the Match directive. Match allows you
to selectively override certain configuration options when specific criteria (based on user, group, hostname, or
address) are met.

• If you are using the HSTS web UI, keep Apache server up to date.

Security Fixes

Rarely, security vulnerabilities are detected in the operating systems and third-party components that are used by
Aspera. Aspera publishes security bulletins immediately that describe the affected products and recommended
remediation steps.

Security Configuration

Recommended security settings vary depending on the products you are using and how they interact. See the
following subsections for your Aspera products.

HSTS

1. Configure your SSH Server.

http://www.url-encode-decode.com/

 | Appendix | 319

Aspera recommends that you:

• Open TCP/33001 and keep TCP/22 open until users are notified that they should switch to TCP/33001.
• Once users are notified, block TCP/22 and allow traffic only on TCP/33001.

The following steps open TCP/33001 and block TCP/22.

a) Open the SSH configuration file.

/etc/ssh/sshd_config

If you do not have an existing configuration for OpenSSH, or need to update an existing one, Aspera
recommends the following reference: https://wiki.mozilla.org/Security/Guidelines/OpenSSH.

b) Change the SSH port from TCP/22 to TCP/33001.

Add TCP/33001 and comment out TCP/22 to match the following example:

#Port 22
Port 33001

HSTS admins must also update the SshPort value in the <WEB...> section of aspera.conf.

Note: If you are using the HSTS web UI, you must also update the SshPort value in the <WEB...> section
of aspera.conf. For details, see Configuring your Web UI Settings on page 333.

Once this setting takes effect:

• Aspera clients must set the TCP port to 33001 when creating connections in the GUI or specify -P
33001 for command line transfers.

• Server administrators should use ssh -p 33001 to access the server through SSH.
c) Disable non-admin SSH tunneling.

SSH tunneling can be used to circumvent firewalls and access sensitive areas of your company's network.
Add the following lines to the end of sshd_config (or modify them if they already exist) to disable SSH
tunneling:

AllowTcpForwarding no
Match Group root
AllowTcpForwarding yes

Depending on your sshd_config file, you might have additional instances of AllowTCPForwarding
that are set to the default Yes. Review your sshd_config file for other instances and disable if necessary.

Disabling TCP forwarding does not improve security unless users are also denied shell access, because
with shell access they can still install their own forwarders. Aspera recommends assigning users to aspshell,
described in the following section.

d) Disable password authentication and enable public key authentication.

Public key authentication provides a stronger authentication method than passwords, and can prevent brute-
force SSH attacks if all password-based authentication methods are disabled.

Important: Before proceeding:

• Create a public key and associate it with a transfer user, otherwise clients have no way of connecting to the
server.

For instructions on using public key authentication, see Creating SSH Keys on page 124 and Setting Up
a User's Public Key on the Server on page 29.

• Configure at least one non-root, non-transfer user with a public key to use to manage the server. This is
because in the following steps, root login is disabled and transfer users are restricted to aspshell, which
does not allow interactive login. This user and public key is what you use to access and manage the server
as an administrator.

https://wiki.mozilla.org/Security/Guidelines/OpenSSH

 | Appendix | 320

Add or uncomment PubkeyAuthentication yes and comment out PasswordAuthentication
yes:

PubkeyAuthentication yes
#PasswordAuthentication yes
PasswordAuthentication no

Note: If you choose to leave password authentication enabled, be sure to advise account creators to use strong
passwords and set PermitEmptyPasswords to "no".

PermitEmptyPasswords no

e) Disable root login.

CAUTION: This step disables root access. Make sure that you have at least one user account with
sudo privileges before continuing, otherwise you may not have access to administer your server.

Comment out PermitRootLogin yes and add PermitRootLogin No:

#PermitRootLogin yes
PermitRootLogin no

f) Restart the SSH server to apply new settings. Restarting your SSH server does not affect currently connected
users.

$ sudo stopsrc -s sshd
$ sudo startsrc -s sshd

g) Review your logs periodically for attacks.

For information on identifying attacks, see IBM Aspera IBM Aspera High-Speed Transfer Server Admin
Guide: Securing Your SSH Server.

2. Configure your server's firewall to permit inbound access to only Aspera-required ports.

Aspera requires inbound access on the following ports:

• For SSH connections that are used to set up connections, TCP/33001.
• For FASP transfers, UDP/33001.
• If you use HTTP and HTTPS fallback with HSTS, TCP/8080 and TCP/8443. If you only use HTTPS, only

open TCP/8443.
• If your clients access the HSTS web UI, TCP/80 (for HTTP) or TCP/443 (for HTTPS).

3. For HSTS, require strong TLS connections to the web server.

TLS 1.0 and TLS 1.1 are vulnerable to attack. Run the following command to require that the client's SSL security
protocol be TLS version 1.2 or higher:

 asconfigurator -x "set_server_data;ssl_protocol,tlsv1.2"

4. If is exposed to internet traffic, run it behind a reverse proxy.

If your Aspera server must expose to the internet, such as when setting it up as a IBM Aspera on Cloud (AoC)
node, Aspera strongly recommends protecting it with a reverse proxy. Normally, runs on port 9092, but
nodes that are added to AoC must have run on port 443, the standard HTTPS port for secure browser access.
Configuring a reverse proxy in front of provides additional protection (such as against DOS attacks) and resource
handling for requests to the node's 443 port.

5. Install Aspera FASP Proxy in a DMZ to isolate your HSTS from the Internet.

For more information, see IBM Aspera FASP Proxy Admin Guide

https://downloads.asperasoft.com/en/documentation/4
https://downloads.asperasoft.com/en/documentation/4
http://downloads.asperasoft.com/en/documentation/42

 | Appendix | 321

Securing the Aspera Applications

Your Aspera products can be configured to limit the extent to which users can connect and interact with the servers.
The instructions for Shares 1.9.x and Shares 2.x are slightly different; see the section for your version.

HSTS

1. Restrict user permissions with aspshell.

By default, all system users can establish a FASP connection and are only restricted by file permissions. Restrict
the user's file operations by assigning them to use aspshell, which permits only the following operations:

• Running Aspera uploads and downloads to or from this computer.
• Establishing connections between Aspera clients and servers.
• Browsing, listing, creating, renaming, or deleting contents.

These instructions explain one way to change a user account or active directory user account so that it uses the
aspshell; there may be other ways to do so on your system.

Run the following command to change the user login shell to aspshell:

 sudo usermod -s /bin/aspshell username

Confirm that the user's shell updated by running the following command and looking for /bin/aspshell at
the end of the output:

 grep username /etc/passwd
username:x:501:501:...:/home/username:/bin/aspshell

Note: If you use OpenSSH, sssd, and Active Directory for authentication: To make aspshell the default
shell for all domain users, first set up a local account for server administration because this change affects all
domain users. Then open /etc/sssd/sssd.conf and change default_shell from /bin/bash to /
bin/aspshell.

2. Restrict Aspera transfer users to a limited part of the server's file system or bucket in object storage.

a) For on-premises servers, set a default docroot to an empty folder, then set a docroot for each user:

 asconfigurator -x "set_node_data;absolute,docroot"
 asconfigurator -x "set_user_data;user_name,username;absolute,docroot"

Replace username with the username and docroot with the directory path to which the user should have
access.

b) For cloud-based servers, set a default restriction to an empty folder, then set a restriction for each user:

 asconfigurator -x "set_node_data;file_restriction,|storage_path"
 asconfigurator -x
 "set_user_data;user_name,username;file_restriction,|storage_path"

Replace username with the username and storage_path with the path to which the user has access. Restriction
syntax is specific to the storage:

Storage Type Format Example

local storage file:////*

S3 and IBM Cloud Object Storage s3://*

Swift storage swift//*

Azure storage azu://*

Azure Files azure-files://*

 | Appendix | 322

Storage Type Format Example

Google Cloud Storage gs://*

Hadoop (HDFS) hdfs://*

The "|" is a delimiter, and you can add additional restrictions. For example, to restrict the system user xfer
to s3://s3.amazonaws.com/bucket_xyz/folder_a/* and not allow access to key files, run the
following command:

 asconfigurator -x "set_user_data;user_name,xfer;file_restriction,|s3://
s3.amazonaws.com/bucket_xyz/folder_a/*|!*.key"

3. Restrict users' read, write, and browse permissions.

Users are given read, write, and browse permissions to their docroot by default. Change the global default to deny
these permissions:

 asconfigurator -x
 "set_node_data;read_allowed,false;write_allowed,false;dir_allowed,false"

Run the following commands to enable permissions per user, as required:

 asconfigurator -x "set_user_data;user_name,username;read_allowed,false"
 asconfigurator -x "set_user_data;user_name,username;write_allowed,false"
 asconfigurator -x "set_user_data;user_name,username;dir_allowed,false"

4. Limit transfer permissions to certain users.

Set the default transfer permissions for all users to deny:

 asconfigurator -x "set_node_data;authorization_transfer_in_value,deny"
 asconfigurator -x "set_node_data;authorization_transfer_out_value,deny"

Allow transfers for specific users by running the following commands for each user:

 asconfigurator -x
 "set_user_data;user_name,username;authorization_transfer_in_value,allow"
 asconfigurator -x
 "set_user_data;user_name,username;authorization_transfer_out_value,allow"

Note: For a user that is used by Shares or Faspex (usually xfer), allow transfers only with a token by setting
authorization_transfer_{in|out}_value to token.

5. Encrypt transfer authorization tokens.

When a client requests a transfer from a server through an Aspera web application, an authorization token is
generated. Set the encryption key of the token for each user or group on the server:

 asconfigurator -x
 "set_user_data;user_name,username;token_encryption_key,token_string"
 asconfigurator -x
 "set_group_data;group_name,groupname;token_encryption_key,token_string"

The token string should be at least 20 random characters.

Note: This is not used to encrypt transfer data, only the authorization token.

6. Require encryption of content in transit.

 | Appendix | 323

Your server can be configured to reject transfers that are not encrypted, or that are not encrypted with a strong
enough cipher. Aspera recommends setting an encryption cipher of at least AES-128. AES-192 and AES-256 are
also supported but result in slower transfers. Run the following command to require encryption:

 asconfigurator -x
 "set_node_data;transfer_encryption_allowed_cipher,aes-128"

By default, your server is configured to transfer (as a client) using AES-128 encryption. If you require higher
encryption, change this value by running the following command:

 asconfigurator -x "set_client_data;transport_cipher,value"

You can also specify the encryption level in the command line by using -c cipher with ascp and async
transfers. ascp4 transfers use AES-128 encryption.

7. Configure SSH fingerprinting for HSTS.

For transfers initiated by a web application (such as Faspex, Shares, or Console), the client browser sends the
transfer request to the web application server over an HTTPS connection. The web application requests a transfer
token from the target server. The transfer is executed over a UDP connection directly between the client and the
target server and is authorized by the transfer token. Prior to initiating the transfer, the client can verify the server's
authenticity to prevent server impersonation and man-in-the-middle (MITM) attacks.

To verify the authenticity of the transfer server, the web application passes the client a trusted SSH host key
fingerprint of the transfer server. The client confirms the server's authenticity by comparing the server's fingerprint
with the trusted fingerprint. In order to do this, the host key fingerprint or path must be set in the server's
aspera.conf.

Note: Server SSL certificate validation (HTTPS) is enforced if a fingerprint is specified in aspera.conf
and HTTP fallback is enabled. If the transfer "falls back" to HTTP and the server has a self-signed certificate,
validation fails. The client requires a properly signed certificate.

If you set the host key path, the fingerprint is automatically extracted from the key file and you do not extract it
manually.

Retreiving and setting the host key fingerprint:

a) Retrieve the server's SHA-1 fingerprint.

 cat /etc/ssh/ssh_host_rsa_key.pub | awk '{print $2}' | base64 -d |
 sha1sum

b) Set the SSH host key fingerprint in aspera.conf. (Go to the next step to set the host key path instead).

 asconfigurator -x
 "set_server_data;ssh_host_key_fingerprint,fingerprint"

This command creates a line similar to the following example of the <server> section of aspera.conf:

<ssh_host_key_fingerprint>7qdOwebGGeDeN7Wv+2dP3HmWfP3
</ssh_host_key_fingerprint>

c) Restart the node service to activate your changes.

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Setting the host key path: To set the SSH host key path instead of the fingerprint, from which the fingerprint will
be extracted automatically, run the following command:

asconfigurator -x "set_server_data;ssh_host_key_path,ssh_key_filepath"

 | Appendix | 324

This command creates a line similar to the following in the <server> section of aspera.conf:

<ssh_host_key_path>/etc/ssh/ssh_host_rsa_key.pub
</ssh_host_key_path>

Restart the node service to activate your changes, as described for "Retreiving and setting the host key
fingerprint".

8. Install properly signed SSL certificates.

Though your Aspera server automatically generates self-signed certificates, Aspera recommends installing valid,
signed certificates. These are required for some applications.

Securing Content in your Workflow

1. If your workflow allows, enable server-side encryption-at-rest (EAR).

When files are uploaded from an Aspera client to the Aspera server, server-side encryption-at-rest (EAR) saves
files on disk in an encrypted state. When downloaded from the server, server-side EAR first decrypts files
automatically, and then the transferred files are written to the client's disk in an unencrypted state. Server-side
EAR provides the following advantages:

• It protects files against attackers who might gain access to server-side storage. This is important primarily
when using NAS storage or cloud storage, where the storage can be accessed directly (and not just through the
computer running HSTS).

• It is especially suited for cases where the server is used as a temporary location, such as when one client
uploads a file and another client downloads it.

• Server-side EAR can be used together with client-side EAR. When used together, content is doubly encrypted.
• Server-side EAR doesn't create an "envelope" as client-side EAR does. The transferred file stays the same

size as the original file. The server stores the metadata necessary for server-side EAR separately in a file of
the same name with the file extension .aspera-meta. By contrast, client-side EAR creates a envelope file
containing both the encrypted contents of the file and the encryption metadata, and it also changes the name of
the file by adding the file extension .aspera-env.)

• It works with both regular transfers (FASP) and HTTP fallback transfers.

Limitations and Other Considerations

• Server-side EAR is not designed for cases where files need to move in an encrypted state between multiple
computers. For that purpose, client-side EAR is more suitable: files are encrypted when they first leave the
client, then stay encrypted as they move between other computers, and are decrypted when they reach the
final destination and the passphrase is available. See Step 4 of this section for more information on client-side
encryption.

• Do not mix server-side EAR and non-EAR files in transfers, which can happen if server-side EAR is enabled
after the server is in use or if multiple users have access to the same area of the file system but have different
EAR configurations. Doing so can cause problems for clients by overwriting files when downloading or
uploading and corrupting metadata.

• Server-side EAR does not work with multi-session transfers (using ascp -C or node API multi_session
set to greater than 1) or Watch Folders (versions prior to 3.8.0 that do not support URI docroots).

To enable server-side EAR:

a) Set users' docroots in URI format (local docroots are prepended with file:///).

 asconfigurator -x "set_user_data;user_name,username;absolute,file:///path"

b) Set the server-side EAR password.

Set a different EAR password for each user or group:

 asconfigurator -x
 "set_user_data;user_name,username;transfer_encryption_content_protection_secret,passphrase"
 asconfigurator -x
 "set_group_data;group_name,group_name;transfer_encryption_content_protection_secret,passphrase"

 | Appendix | 325

Important: If the EAR password is lost or aspera.conf is compromised, you cannot access the data on
the server.

c) Require content protection and strong passwords.

These settings cause server-side EAR to fail if a password is not given or if a password is not strong enough.
For example, the following asconfigurator command adds both these options for all users (global):

 asconfigurator -x "set_node_data;transfer_encryption_content_protection_required,true"
 asconfigurator -x "set_node_data;transfer_encryption_content_protection_strong_pass_required,true"

2. Never use "shared" user accounts.

Configure each user as their own Aspera transfer user. Sharing Aspera transfer user account credentials with
multiple users limits user accountability (you cannot determine which of the users sharing the account performed
an action).

3. Use passphrase-protected private keys.

The ssh-keygen tool can protect an existing key or create a new key that is passphrase protected.

If you cannot use private key authentication and use password authentication, use strong passwords and change
them periodically.

4. If your workflow allows, require client-side encryption-at-rest (EAR).

Aspera clients can set their transfers to encrypt content in transit and on the server, and the server can be
configured to require client-side EAR. You can combine client-side and server-side EAR, in which case files are
doubly encrypted on the server. Client-side encryption-at-rest is not supported for ascp4 or async transfers.

Client configuration

The client specifies a password and the files are uploaded to the server with a .aspera-env extension. Anyone
downloading these .aspera-env files must have the password to decrypt them. Users can enable client-side
EAR in the GUI or on the ascp command line.

GUI: Go to Connections > connection_name > Security. Select Encrypt uploaded files with a password and
set the password. Select Decrypt password-protected files downloaded and enter the password.

Ascp command line: Set the encryption and decryption password as the environment variable
ASPERA_SCP_FILEPASS. For uploads (--mode=send), use --file-crypt=encrypt. For downloads
(--mode=recv), use --file-crypt=decrypt.

Note: When a transfer to HSTS falls back to HTTP or HTTPS, client-side EAR is no longer supported. If HTTP
fallback occurs while uploading, then the files are NOT encrypted. If HTTP fallback occurs while downloading,
then the files remain encrypted.

Server configuration

To configure the server to require client-side EAR and to require strong content protection passwords, run the
following commands:

 asconfigurator -x "set_node_data;transfer_encryption_content_protection_required,true"
 asconfigurator -x "set_node_data;transfer_encryption_content_protection_strong_pass_required,true"

Note: These commands set the global configuration. Depending on your work flow, you might want to require
client-side EAR and strong passwords for only specific users or groups.

5. For particularly sensitive content, do not store unecrypted content on any computer with network access.

HSTS, HSTE, and Desktop Client include the asprotect and asunprotect command-line tools that can be
used to encrypt and decrypt files. Use an external drive to physically move encrypted files between a network-
connected computer and an unconnected computer on which the files can be unencrypted.

• To encrypt a file before moving it to a computer with network access, run the following commands to set the
encryption password and encrypt the file:

 export ASPERA_SCP_FILEPASS=password
 asprotect -o filename.aspera-env filename

 | Appendix | 326

• To download client-side-encrypted files without decrypting them immediately, run the transfer without
decryption enabled (clear Decrypt password-protected files downloaded in the GUI or do not specify --
file-crypt=decrypt on the ascp command line).

• To decrypt encrypted files, run the following commands to set the encryption password and decrypt the file:

 export ASPERA_SCP_FILEPASS=password
 asprotect -o filename filename.aspera-env

Testing and Optimizing Transfer Performance
To verify that your system's FASP transfer is reaching the target rate and can use the maximum bandwidth capacity,
prepare a client to connect to an Aspera server. For these tests, you can transfer an existing file or file set, or you can
transfer uninitialized data in place of a source file, which you can destroy at the destination, eliminating the need to
read from or write to disk and saving disk space.

Using faux:/// as a Test Source or Destination

You can use faux:/// as the argument for the source or destination of an Ascp session to test data transfer without
reading from disk on the source and writing to disk on the target. The argument takes different syntax depending on if
you are using it as a mock source file or mock source directory.

Note: If you set very large file sizes (> PB) in a faux:/// source, Aspera recommends that you use faux:// as a
target on the destination because most computers do not have enough system memory available to handle files of this
size and your transfer might fail.

Faux Source File

To send random data in place of a source file (do not read from the source), you can specify the file as
faux:///fname?fsize.fname is the name assigned to the file on the destination and fsize is the number of bytes
to send. fsize can be set with modifiers (k/K, m/M, g/G, t/T, p/P, or e/E) to a maximum of 7x260 bytes (7 EiB).

For example:

 ascp --mode=send --user=username --host=host_ip_address faux:///fname?fsize target_path

Faux Source Directory

In some cases, you might want to test the transfer of an entire directory, rather than a single file. Specify the faux
source directory with the following syntax:

faux:///dirname?
file=file&count=count&size=size&inc=increment&seq=sequence&buf_init=buf_option

Where:

• dirname is a name for the directory (required)
• file is the root for file names, default is "file" (optional)
• count is the number of files in the directory (required)
• size is the size of the first file in the directory, default 0 (optional). size can be set with modifiers (k/K, m/M, g/G,

t/T, p/P, or e/E) to a maximum of 7x260 bytes (7 EiB).
• increment is the increment of bytes to use to determine the file size of the next file, default 0 (optional)
• sequence is how to determine the size of the next file: "sequential" or "random". Default is "sequential" (optional).

When set to "sequential", file size is calculated as:

size + ((N - 1) * increment)

Where N is the file index; for the first file, N is one.

 | Appendix | 327

When set to "random", file size is calculated as:

size +/- (rand * increment)

Where rand is a random number between zero and one. If necessary, increment is automatically adjusted to
prevent the file size from being negative.

For both options, increment is adjusted to prevent the file size from from exceeding 7x260 bytes.
• buf_option is how faux source data are initialized: "none", "zero", or "random". Default is "zero". "none" is not

allowed for downloads (Ascp run with --mode=recv).

When the defaults are used, Ascp sends a directory that is named dirname and that contains count number of zero-
byte files that are named file_count.

For example, to transfer a faux directory ("mydir") that contains 1 million files to /tmp on 10.0.0.2, and the files in
mydir are named "testfile" and file size increases sequentially from 0 to 2 MB by an increment of 2 bytes:

 ascp --mode=send --user=username --host=10.0.0.2 faux:///mydir?
file=testfile&count=1m&size=0&inc=2&seq=sequential /tmp

Faux Target

To send data but not save the results to disk at the destination (do not write to the target), specify the target as
faux://.

For example, to send a real file to a faux target, run the following command:

 ascp --mode=send --user=username --host=host_ip_address source_file1 faux://

To send random data to a faux target, run the following command:

 ascp --mode=send --user=username --host=host_ip_address faux:///fname?fsize faux://

Testing Transfer Performance

1. Start a transfer with fair transfer policy and compare the transfer rate to the target rate.

On the client computer, open the user interface and start a transfer (either from the GUI or command line). Click
Details to open the Transfer Monitor.

To leave more network resources for other high-priority traffic, use the Fair policy and adjust the target rate and
minimum rate by sliding the arrows or entering values.

2. Test the maximum bandwidth.

Note: This test will typically occupy a majority of the network's bandwidth. Aspera recommends performing it on
a dedicated file transfer line or during a time of very low network activity.

Use Fixed policy for the maximum transfer speed. Start with a lower transfer rate and increase gradually toward
the network bandwidth.

Hardware Upgrades for Better Performance

To improve the transfer speed, you can also upgrade the related hardware components:

Component Description

Hard disk The I/O throughput, the disk bus architecture (such as RAID, IDE, SCSI, ATA, and Fiber
Channel).

Network I/O The interface card, the internal bus of the computer.

CPU Overall CPU performance affects the transfer, especially when encryption is enabled.

 | Appendix | 328

Create an SSL Certificate (Apache)
You can generate an RSA Private Key, Certificate Signing Request (CSR), and optional self-signed certificate
by using OpenSSL. For your organization's internal or testing purposes, Aspera provides the PEM files
aspera_server_cert.pem and aspera_server_key.pem, which are in the following directory:

/opt/aspera/etc/

About PEM Files:

PEM certificates have extensions that include .pem, .crt, .cer, and .key, and are Base-64 encoded ASCII files
containing "-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" statements. Server certificates,
intermediate certificates, and private keys can all be put into PEM format. Apache and other similar servers use PEM
format certificates.

1. Install OpenSSL.

OpenSSL is used to generate an RSA Private Key and a Certificate Signing Request (CSR) and to generate self-
signed certificates for testing purposes or internal usage.

Your operating system might already have OpenSSL installed. If you do not have OpenSSL, you can install it
from the Aspera-provided binary in the following location:

aspera_install_dir/bin/

You can also visit http://www.openssl.org/source for a repository of all OpenSSL distribution tarballs. Aspera
recommends that you review your specific operating system's documentation for information on installing or
upgrading OpenSSL packages.

2. Generate your Private Key and Certificate Signing Request using OpenSSL by running the following command:

$ openssl req -new -nodes -newkey rsa:2048 -keyout my_key_name.key -
out my_csr_name.csr

Where my_key_name.key is the name of the unique key you are creating and my_csr_name.csr is the name of your
CSR.

3. Enter your X.509 certificate attributes.

The command in the previous step runs and prompts you to input the certificate's X.509 attributes.

Important: The common name is the fully qualified domain name of the server to be protected by SSL.
If you are generating a certificate for an organization outside of the U.S., see http://www.iso.org/iso/
english_country_names_and_code_elements for a list of 2-letter, ISO country codes.

Generating a 1024 bit RSA private key
....................++++++
................++++++
writing new private key to 'my_key_name.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a
 DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:Your_2_letter_ISO_country_code
State or Province Name (full name) [Some-
State]:Your_State_Province_or_County
Locality Name (eg, city) []:Your_City

http://www.openssl.org/source
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.iso.org/iso/english_country_names_and_code_elements

 | Appendix | 329

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Your_Company
Organizational Unit Name (eg, section) []:Your_Department
Common Name (i.e., your server's hostname) []:secure.yourwebsite.com
Email Address []:johndoe@yourwebsite.com

You are also prompted to enter "extra" attributes, including an optional challenge password. Note that manually
entering a challenge password when starting the server can be problematic in some situations (for example, when
starting the server from the system boot scripts). You can skip entering a challenge password by pressing ENTER.

...
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

After finalizing the attributes, the private key and CSR are saved to your root directory.

Important: If you make a mistake when running the OpenSSL command, you can discard the generated files and
run the command again. After successfully generating your key and Certificate Signing Request, be sure to guard
your private key, as it cannot be regenerated.

4. Send the CSR to your signing authority.

Send your unsigned CSR to a Certificate Authority (CA). Once the CSR is signed, you have a real certificate that
can be used by Apache.

Important: Some Certificate Authorities provide a Certificate Signing Request generation tool on their Website.
Please check with your CA for additional information.

5. Generate a Self-Signed Certificate (Optional).

At this point, you might need to generate a self-signed certificate for either of the following reasons:

• You don't plan on having your certificate signed by a CA (Some Aspera applications do not allow self-signed
certificates)

• You wish to test your new SSL implementation while the CA is signing your certificate

When you use a self-signed certificate, it will generate an error in the client's browser to the effect that the signing
certificate authority is unknown and not trusted.

To generate a temporary certificate that is valid for 365 days, run the following command:

openssl x509 -req -days 365 -in my_csr_name.csr -signkey my_key_name.key -
out my_cert_name.crt

6. Copy the key and signed certificate into the Apache /conf directory.

Edit your httpd-ssl.conf file to point to the new key and certificate files. You can store the certificate and
key in any directory, as long as the paths are updated in your configuration file. For additional information, see
Enable SSL (Apache).

Enable SSL (Apache)
Install and enable an SSL certificate for your HST Server Web UI.

These instructions assume that you have already purchased your key and have created your certificate and key files.

1. Locate your Apache configuration file and open with a text editor.

The name of your Apache configuration file depends on your system platform. Typically, your Apache
configuration file is named httpd.conf or apache2.conf.

If you cannot locate the configuration file for your system's version of Apache, see the documentation for your
platform.

 | Appendix | 330

2. Verify or update Apache's SSL configuration file and save.

a) Open your Apache SSL configuration file, httpd-ssl.conf. If you cannot locate the configuration file,
see the Apache documentation for your operating system.

b) Verify that the following line is uncommented:

Include conf/extra/[httpd-]ssl.conf

c) Add the following section to your configuration file (httpd.conf):

<IfModule ssl_module>
 Listen 443
</IfModule>

d) Update the SSLCertificateFile and SSLCertificateKeyFile values to the correct certificate
paths and file names.

For example:

...
SSLCertificateFile /path/to/my_cert_name.crt
SSLCertificateKeyFile /path/to/my_key_name.key
...

e) Save your changes and close the file.

3. Restart the Apache Web Server.

$ apachectl stop
$ apachectl start

4. Test your SSL connection.

Go to https://your-server-ip-or-name to test your SSL setup. This must be the same hostname that
you entered into the common name field when creating your certificate. For details, please refer to Create an
SSL Certificate (Apache).

Log Files
The Aspera log file includes detailed transfer information and can be useful for review and support requests.

The log file is found in /var/log/aspera.log

Configuring AIX to log FASP Transfers to the System Log

On AIX, additional configuration is required to log Aspera's FASP transfers to the system log. To do so, run the
following commands to modify /etc/syslog.conf and activate your changes.

echo 'local2.info /var/log/aspera.log' >> /etc/syslog.conf
touch /var/log/aspera.log
refresh -s syslogd

If your syslog.conf lists log files with "wild cards", such as *.info;*.err, append local2.none. For
example, change the following line:

.info;.err /var/adm/system.log

To the following:

.info;.err;local2.none /var/adm/system.log

 | Appendix | 331

When finished, touch the log file as root, and restart system log process:

touch /var/log/aspera.log
svcadm restart svc:/system/system-log:default

Note: The maximum file size for the syslogd log file is 2 GB.

If you find that logs are being overwritten before long transfers of many files are complete, you can increase the log
size. For more information, see Logs Overwritten Before Transfer Completes on page 315.

HST Server Web UI (Deprecated)
The HST Server web UI offers a simple, web-based interface that clients can use to browse the area of the HST
Server file system to which they are permitted access, as well as upload and download content. Configure your
system to make the web UI accessible to clients.

CAUTION:

The HST Server web UI is deprecated and will be removed from the product in a future release.

Configuring the Apache Server to Host the HST Server Web UI
The HST Server web UI is a web-based file server that enables clients to access the server file system through a web
browser, and transfers files using IBM Aspera Connect. You can set up HTTP fallback to establish HTTP- or HTTPS-
based file transfers with clients that don't have FASP connectivity.

These instructions describe how to configure your system's Apache server to host HST Server's web UI. The Apache
files might be located in different paths or your Apache server could require additional settings, depending on your
operating system's distribution and configuration.

Note: If HST Server and IBM Aspera Faspex versions 4.1.0 or newer are installed on the same computer, they
cannot use the same Apache.

1. Locate and open your Apache configuration file, usually called httpd.conf.

2. Review the ServerName setting.

Locate the ServerName section in httpd.confand verify that the server name is correct. The following
example shows how to set the HST Server domain name or IP address. Set only one.

ServerName www.ConnectServerName.com
ServerName 10.0.0.1

3. Locate the line for UseCanonicalName and verify that it is set to off (default value).

UseCanonicalName off

4. Confirm that Apache is being run by user "apache".

By default, the sudoers file is configured to run Apache as the user "apache". When a different user, such as
"nobody", is running Apache, the HST Server web UI does not display properly. The httpd.conf should
contain the following:

...
User apache
Group apache
...

For instructions on changing the user, see your Apache guide.

5. Review or modify your web UI settings.

 | Appendix | 332

Add the following section at the end of the configuration file if it is not already there:

#BEGIN_ASPERA
<Directory /opt/aspera/var/webtools>
 AllowOverride All
 Require all granted
</Directory>
<Directory /opt/aspera/var/webtools/scripts>
 AddHandler cgi-script .pl
 SetHandler cgi-script
 Options +ExecCGI
 AllowOverride All
</Directory>
ScriptAlias /aspera/scripts/ "/opt/aspera/var/webtools/scripts/"
Alias /aspera/ "/opt/aspera/var/webtools/"
#END_ASPERA

6. Enable the cgi and the dir modules.

Run the following commands:

$ sudo a2enmod dir
$ sudo a2enmod cgi
$ sudo a2enmod cgid

7. Configure Apache authentication for the system user on the HST Server.

In addition to SSH authentication, HST Server uses Apache's authentication to authorize web UI access. To set up
a system user (asp1 in this example) for Apache authentication, run the htpasswd command below.

Note: On the first run of htpasswd, you must use the -c option to create the file for credential storage,
webpasswd. Do not use the -c option otherwise.

 htpasswd [-c]/opt/aspera/etc/webpasswd asp1

8. Configure SSL. (Optional)

For instructions on generating an RSA Private Key, a Certificate Signing Request (CSR), and an optional self-
signed certificate by using OpenSSL, see Create an SSL Certificate (Apache) on page 328.

Once you create your private key and Certificate (or you are using the unsigned Certificate provided by Aspera),
see Enable SSL (Apache) on page 329.

9. Restart your Apache web server.

$ apachectl stop
$ apachectl start

10. Enable system-level security.

Enabling system-level security allows the web UI to accurately display users' files and show or hide controls
depending on users' permissions (this includes the delete and make directory functions).

$ sudo /opt/aspera/sbin/enablesecure enable

Once the script is executed, you are prompted to input the name of the Apache user.

User running apache (default apache):

Based on your input, the script generates text similar to the following. Use visudoers to copy-and-paste the
generated text into your /etc/sudoers file. In the following example output, apache is the account that is
running Apache and is the Aspera installation directory.

 | Appendix | 333

Important: Do not paste the example output shown below into your sudoers file. Paste the output generated
when you ran the enablesecure script as described above.

BEGIN IBM Aspera High-Speed Transfer Server
The user account that runs the web server will impersonate
the logged-in user to present that user's files and folders.
Defaults env_keep += "SERVER_NAME REQUEST_URI REQUEST_METHOD REMOTE_USER
 QUERY_STRING CONTENT_LENGTH SESSION_ID CSRF_TOKEN"
Defaults:apache !requiretty
apache ALL=(ALL) NOPASSWD: /opt/aspera/var/webtools/scripts/aspera-
dirlist.pl,
SETENV: /opt/aspera/var/webtools/scripts/aspera-dirlist.pl
END IBM Aspera High-Speed Transfer Server

Note: Once secure permissions are enabled, users see the Delete and Create Folder buttons, allowing then
to remove files and create directories on the server (within their docroot). To hide the Delete and Create
Folder buttons, update the web UI configuration parameters EnableDelete and EnableCreateFolder,
respectively. See Configuring your Web UI Settings on page 333 for details.

To disable the secure permissions, run the enablesecure script again with the argument disable.

/opt/aspera/sbin/enablesecure disable

11. Verify that cookies are enabled in the client Web browsers.

Note: Cookies must be enabled in client browsers. Otherwise, they might get an error message when they attempt
to access the HST Server web UI.

Configuring your Web UI Settings
Configure transfer settings for the HST Server web UI by manually editing aspera.conf.

1. Open aspera.conf in a text editor with admin or root privileges.

/opt/aspera/etc/aspera.conf

2. Open Aspera's sample web UI configuration file in a text editor.

/opt/aspera/etc/samples/aspera-web-sample.conf

3. Copy the <WEB> section from the sample web UI configuration file and paste it into aspera.conf.

<CONF version="2">

<WEB
 SshPort = "22"
 UdpPort = "33001"
 PathMTU = "0"
 HttpFallback = "yes"
 HttpFallbackPort = "8080"
 HttpsFallbackPort = "8443"
 EnableDelete = "yes"
 EnableCreateFolder = "yes"
 EnableUserSwitching = "no"
/>
...
</CONF>

4. Edit the <WEB> section to fit your requirements.

The sample is prepopulated with the default values.

Important: Although the industry-standard SSH port is TCP/22, Aspera recommends changing it to TCP/33001
(as described in Securing your SSH Server). The default configuration example, above, assumes your SSH port is
set to TCP/33001.

 | Appendix | 334

The table below provides descriptions of all web UI configuration options, including some that are not in the
sample.

Field Description Values Default

SshPort The TCP port for SSH transfer communication. integer
between 1 and
65535

22

UdpPort The UDP port for FASP file transfer. integer
between 1 and
65535

33001

PathMTU Set the maximum packet size for file transmission.
When set to "0", FASP automatically sets an
appropriate value for the network.

integer
between 296
and 10000

0

HttpFallback Enable HTTP Fallback transfer when UDP transfer
fails.

yes / no no

HttpFallbackPort The TCP port for HTTP Fallback transfer. integer
between 1 and
65535

8080

HttpsFallbackPort The TCP port for HTTPS Fallback transfer. integer
between 1 and
65535

8443

EnableDelete Set to yes (default) to allow users with the
appropriate permissions to delete files and folders
within the web UI.

yes / no yes

EnableCreateFolder Set to yes (default) to allow users with the
appropriate permissions to create new folders using
the New Folder button within the web UI.

Note: The user can still upload a new folder even if
EnableCreateFolder is set to no.

yes / no yes

AsperaServer To use this computer solely for the HST Server web
UI (and not for file transfers), enter the IP address
or host name of the transfer server machine in this
field. In the case of a high-availability or clustered
setup, this value should be the IP address or host
name of the VIP (from where the VIP/cluster service/
load balancer will manage the transfer servers). Once
added, HST Server allows the user to transfer to and
from the file system on the indicated transfer server
machine.

The IP address
or host name
of the transfer
server machine

unspecified
(transfer using
local machine)

MinimumConnectVersionSet the minimum version of IBM Aspera Connect
that must be installed in order for users to be able
to use HST Server. If the minimum version is not
installed, a message is displayed that indicates the
minimum version required and provides a download
link. This option takes the value in the format of the
Connect version, for example, 3.0.0.12345.

Note: The default value for this setting is also the
lowest allowable value. If the value specified is

Version
number

2.8.0.0

 | Appendix | 335

Field Description Values Default

below the default value, the web UI enforces the
default value.

EnableUserSwitching Allow a user to switch to a different user account.
When set to yes, a Change User button is added
to the web page in the upper-right corner. Note that
the feature only allows users to log in to a different
account than the one they are exiting.

This is currently an experimental feature.

yes / no no

EnableSortByName When set to true, files are sorted into a given order
to be displayed in before being listed on the HST
Server web UI.

Important: Aspera recommends using the default
setting of false. If you browse a directory that
contains numerous files, then browsing performance
may be impacted by the sorting process.

true / false false

5. Secure your web server.

Aspera recommends the following security settings:

• Require HTTPS and disable HTTP connections. For instructions, see the documentation for your OS and web
server.

• Require strong SSL. Run the following command to require that the SSL security protocol be TLS version 1.2
or higher:

 asconfigurator -x "set_server_data;ssl_protocol,tlsv1.2"

This setting applies to HTTP(S) fallback transfers as well.

6. Restart asperahttpd and asperanoded.

Run the following commands to restart asperahttpd:

 /etc/rc.d/init.d/asperahttpd restart

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Customize the Appearance of the Web UI
Customize the header and footer of the HST Server web UI by modifying the configuration files.

1. Open the header and footer files from the following locations:

• Header - /opt/aspera/var/webtools/aspdir-header.html
• Footer - /opt/aspera/var/webtools/aspdir-footer.html

2. Modify the header and footer then save your changes.

Testing the Web UI
Once your HST Server web UI is set up and your server is running, test web UI-initiated transfers. Users must be
configured with a docroot and a token encryption key before they can access the web UI.

Note: These instructions require steps to be taken on both the HST Server and a client computer. Make sure that you
are performing the steps on the correct computer.

 | Appendix | 336

1. Configure an Aspera transfer user in HST Server.

Set default values to authorize transfers in and out, set the encryption key, and set the default docroot by running
the following commands:

$ asconfigurator -x "set_node_data;authorization_transfer_in_value,allow"
$ asconfigurator -x "set_node_data;authorization_transfer_out_value,allow"
$ asconfigurator -x "set_node_data;token_encryption_key,token_key"
$ asconfigurator -x "set_node_data;absolute,docroot"

These commands create the following lines in aspera.conf. In the example, the docroot is /sandbox/
$(name). By using the substitutable string $(name) in the docroot, the application automatically replaces it
with the login user name.

<CONF version="2">
 ...
 <default>
 <authorization>
 <transfer>
 <in>
 <value>allow</value>
 </in>
 <out>
 <value>allow</value>
 </out>
 </transfer>
 <token>
 <encryption_key>fwierj283ru23jrszellr73rj2fnsk38ru28h3r3ashre</
encryption_key>
 </token>
 </authorization>
 <file_system>
 <access>
 <paths>
 <path>
 <absolute>/sandbox/$(name)</absolute>
 </path>
 </paths>
 </access>
 </file_system>
 ...
 </default>
</CONF>

To add the settings to aspera.conf manually, open it from the following directory:

/opt/aspera/etc/aspera.conf

2. Test the web UI with the client computer.

The client computer must be running a supported operating system and browser and cookies must be enabled in
the client's browser.

a) Go to the following address in the browser:

HTTP http://server_ip_or_name/aspera/user

HTTPS https://server_ip_or_name/aspera/user

b) The IBM Aspera Connect banner appears with a link to download and install the latest version of Connect:

 | Appendix | 337

Click Download latest version.
c) Once the installation is complete, refresh the page and the web UI for appears:

d) In the web UI, click Upload and select one or more files to upload to HST Server.

Note: When you add files to the web UI, do not use the following characters in the filenames:

/ \ " : ' ? > < & * |

e) When the transfer is finished, select the uploaded files in the web UI, and click Download.

If you cannot run FASP transfers by using the web UI, see Clients Can't Establish Connection on page 313.

Configuring HTTP and HTTPS Fallback
HTTP fallback serves as a secondary transfer method when the Internet connectivity required for Aspera FASP
transfers (UDP port 33001, by default) is unavailable. When HTTP fallback is enabled and UDP connectivity is lost
or cannot be established, the transfer will continue over the HTTP (or HTTPS) protocol. These instructions describe
how to enable and configure HTTP/HTTPS fallback.

Prerequisites:

• Configure your HSTS web UI, as described in Configuring Your Web UI Settings. For additional information
on configuring different modes and testing, see the Aspera KB Article "HTTP fallback configuration, testing and
troubleshooting."

Limitations:

https://support.asperasoft.com/entries/20153151_http_fallback_configuration_testing_and_troubleshooting
https://support.asperasoft.com/entries/20153151_http_fallback_configuration_testing_and_troubleshooting

 | Appendix | 338

• Folders that are symbolic links cannot be downloaded directly by using HTTP fallback. Folders that are symbolic
links are processed correctly when their parent folder is the source.

• HTTP fallback can only follow symbolic links. Settings in aspera.conf or in the command line are ignored.
• HTTP fallback attempts to transfer at the target rate but is limited by TCP.
• HTTP fallback does not support pre-post processing or inline validation.

Process:

1. Enable HTTP/HTTPS fallback for your web server.

a) Open aspera.conf from the following location:

/opt/aspera/etc/aspera.conf

b) Edit the <WEB/> section.

Confirm the following entries are correct:

<WEB
 ...
 HttpFallback = "yes"
 HttpFallbackPort = "8080"
 HttpsFallbackPort = "8443"
/>

c) Save and close the file.
d) Confirm that aspera.conf is formed correctly.

Validate the aspera.conf file using the asuserdata utility:

 asuserdata -v

2. Configure HTTP/HTTPS fallback settings.

Run the following commands:

• To view the current HTTP settings in aspera.conf:

$ asuserdata -b -t

• To enable HTTP fallback:

$ asconfigurator -x "set_http_server_data;enable_http,true"

• To enable HTTPS fallback, if using:

$ asconfigurator -x "set_http_server_data;enable_https,true"

• To set the HTTP port (default 8080, must match the value in the <WEB> section of aspera.conf):

$ asconfigurator -x "set_http_server_data;http_port,8080"

• To set the HTTPS port (default 8443, must match the value in the <WEB> section of aspera.conf):

$ asconfigurator -x "set_http_server_data;https_port,8443"

These commands edit or create the following lines in aspera.conf:

<CONF version="2">
 ...
 <http_server>
 ...
 <enable_http>true</enable_http> <!-- Enable HTTP -->
 <enable_https>true</enable_https> <!-- Enable HTTPS -->
 <http_port>8080</http_port> <!-- HTTP port -->

 | Appendix | 339

 <https_port>8443</https_port> <!-- HTTPS port -->
 ...
 </http_server>
</CONF>

To manually inspect and edit aspera.conf, open it from the following directory:

/opt/aspera/etc/aspera.conf

3. Review additional HTTP fallback settings.

Additional HTTP fallback settings can be set in aspera.conf:

Field Description Values Default

Cert File The absolute path to an SSL certificate file. If left blank,
the default certificate file that came with HST Server is
used.

file path blank

Key File The absolute path to an SSL key file. If left blank, the
default certificate file that came with your HST Server is
used.

file path blank

Bind Address The network interface address on which the HTTP
fallback server listens. The default value 0.0.0.0 allows
the HTTP fallback server to accept transfer requests on all
network interfaces for this node. Alternatively, a specific
network interface address may be specified.

valid IPv4 address 0.0.0.0

Restartable
Transfers

Set to true to allow interrupted transfers to resume from
the point of interruption.

true or false true

Session Activity
Timeout

Any value greater than 0 sets the amount of time, in
seconds, that the HTTP fallback server will wait without
any transfer activity before canceling the transfer.
This option cannot be set to 0, otherwise interrupted
HTTP fallback sessions will get stuck until server or
asperacentral is restarted.

positive integer 20

HTTP Port The port on which the HTTP server listens. Valid port
numbers range between 1 and 65535.

positive integer 8080

HTTPS Port The port on which the HTTPS server listens. Valid port
numbers range between 1 and 65535.

positive integer 8443

Enable HTTP Enables the HTTP fallback server that allows failed UDP
transfers to continue over HTTP.

true or false false

Enable HTTPS Enables the HTTPS fallback server that allows failed UDP
transfers to continue over HTTPS.

true or false false

<CONF version="2">
 ...
 <http_server>
 <cert_file> </cert_file>
 <key_file> </key_file>
 <bind_address>0.0.0.0</bind_address>
 <restartable_transfers>true</restartable_transfers>
 <session_activity_timeout>1</session_activity_timeout>
 <enable_http>true</enable_http>
 <enable_https>true</enable_https>
 <http_port>8080</http_port>
 <https_port>8443</https_port>

 | Technical Support | 340

 </http_server>
</CONF>

4. Set a token encryption key.

If HTTP/HTTPS fallback is enabled, a token encryption key is required. If HTTP/HTTPS is configured without
the encryption key, initiating a transfer with the download button generates the following error:

Error: internal error - unable to start token generation

The token encryption key is the secret text string used for authorizing transfers configured to require a token.
Aspera recommends setting a key string at least 20 random characters long.

To set the token encryption key in aspera.conf, run the following command:

$ asconfigurator -x "set_node_data;token_encryption_key,secret_string"

The key should be a string of random characters, at least 20 recommended. This adds or updates the
<encryption_key> value in the <authorization> section:

Important: After changing your Aspera token settings—either in aspera.conf or the GUI—you must restart
asperahttpd. For instructions, see the last step in these instructions.

5. If you manually edited aspera.conf, validate your updated configuration file:

$ asuserdata -v

6. After enabling HTTP fallback and setting a token encryption key, restart asperacentral, , and asperahttpd.

Run the following command in a Terminal window to restart asperacentral:

 /etc/rc.d/init.d/asperacentral stop
 /etc/rc.d/init.d/asperacentral start

Run the following commands to restart asperanoded:

 /etc/rc.d/init.d/asperanoded restart

Run the following commands to restart asperahttpd:

 /etc/rc.d/init.d/asperahttpd restart

Product Limitations
Describes any limitations that currently exist for Aspera transfer server and client products.

• Path Limit: The maximum number of characters that can be included in any pathname is 512 on Windows and
4096 on Unix-based platforms.

• Illegal Characters: Avoid the following characters in filenames: / \ " : ' ? > < & * |.
• Environment Variables: The total size for environment variables depends on your operating system and transfer

session. Aspera recommends that each environment variable value should not exceed 4096 characters.

Technical Support

Support Websites

For an overview of IBM Aspera Support services, visit https://www.ibm.com/products/aspera/support.

https://www.ibm.com/products/aspera/support

 | Legal Notice | 341

To view product announcements, webinars, and knowledgebase articles, as well as access the Aspera Support
Community Forum, sign into the IBM Aspera Support site at https://www.ibm.com/mysupport/ using your IBMid
(not your company Aspera credentials), or set up a new account.

Technical Support

You may contact Aspera support using the IBM Aspera Support Guide: https://www.ibm.com/support/home/pages/
support-guide/?product=3712142

Legal Notice

© 2018- 2020 Aspera, Inc., an IBM Company. All rights reserved.

Licensed Materials - Property of IBM
5725-S58
© Copyright IBM Corp., 2008, 2020. Used under license.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Aspera, the Aspera logo, and FASP transfer technology are trademarks of Aspera, Inc., registered in the United
States. Aspera Drive, IBM Aspera High-Speed Transfer Server (a merger of IBM products formerly named Aspera
Connect Server and Aspera Enterprise Server, 2008 and 2007), IBM Aspera High-Speed Endpoint (formerly Aspera
Point-to-Point, 2006), IBM Aspera Desktop Client (formerly Aspera Client, 2005), Aspera Connect, Aspera Cargo,
Aspera Console, Aspera Orchestrator, Aspera Crypt, Aspera Shares, the Aspera Add-in for Microsoft Outlook,
Aspera FASPStream, and Aspera Faspex are trademarks of Aspera, Inc. All other trademarks mentioned in this
document are the property of their respective owners. Mention of third-party products in this document is for
informational purposes only. All understandings, agreements, or warranties, if any, take place directly between the
vendors and the prospective users.

https://www.ibm.com/mysupport/
https://www.ibm.com/support/home/pages/support-guide/?product=3712142
https://www.ibm.com/support/home/pages/support-guide/?product=3712142

	Contents
	Introduction
	Installation and Upgrades
	Before Upgrading or Downgrading
	Installing HST Server
	Upgrade Follow up

	Configuring the Firewall
	Securing Your SSH Server
	Changing and Securing the TCP Port
	Configuring Transfer Server Authentication With the Host-Key Fingerprint

	Testing a Locally Initiated Transfer
	Updating the Product License
	Uninstalling

	Get Started with an Aspera Transfer Server
	Get Started as a Transfer Client
	Comparison of Aspera File Delivery and Synchronization Tools
	Server Set up Methods
	Set up Users and Groups
	Setting Up Transfer Users
	Setting Up Transfer Groups
	Configuration Precedence
	Setting Up a User's Public Key on the Server
	Testing a User-Initiated Remote Transfer

	Configure the Server from the Command Line
	aspera.conf - Authorization Configuration
	aspera.conf - Transfer Configuration
	Controlling Bandwidth Usage with Virtual Links (Command Line)
	Global Bandwidth Settings (Command Line)
	Increasing Transfer Performance by Using an RTT Predictor
	aspera.conf - File System Configuration
	aspera.conf - Transfer Server Configuration
	aspera.conf - Filters to Include and Exclude Files
	Server-Side Encryption-at-Rest (EAR)
	Reporting Checksums
	Server Logging Configuration for Ascp and Ascp 4
	Out-of-Transfer File Validation
	Inline File Validation
	Inline File Validation with URI
	Inline File Validation with Lua Script

	File Pre- and Post-Processing (Prepost)
	Setting Up Pre/Post Processing
	Pre/Post Variables
	Pre/Post Script Examples

	Email Notifications
	Setting Up Email Notifications
	Email Notification Examples

	ascp: Transferring from the Command Line with Ascp
	Ascp Command Reference
	Ascp General Examples
	Ascp File Manipulation Examples
	Ascp Transfers with Object Storage and HDFS
	Transfers with IBM Aspera On Demand and Cloud-Based HST Servers
	Writing Custom Metadata for Objects in Object Storage

	Multi-Session Transfers
	Using Standard I/O as the Source or Destination
	Using Filters to Include and Exclude Files
	Symbolic Link Handling
	Creating SSH Keys
	Reporting Checksums
	Client-Side Encryption-at-Rest (EAR)
	Comparison of Ascp and Ascp 4 Options
	Ascp FAQs

	ascp4: Transferring from the Command Line with Ascp 4
	Introduction to Ascp 4
	Ascp 4 Command Reference
	Ascp 4 Transfers with Object Storage
	Ascp 4 Examples
	Built-in I/O Providers
	Data Streaming Command Syntax
	Ascp 4 Data Streaming Examples
	Configuring macOS Server for Multicast Streams
	Troubleshooting Stream Transfers

	Watch Folders and the Aspera Watch Service
	Introduction to Watch Folders and the Aspera Watch Service
	Choosing User Accounts to Run Watch Folder Services
	Creating, Managing, and Configuring Services
	Watch Folders
	Getting Started with Watch Folders
	Creating a Push Watch Folder with aswatchfolderadmin
	Creating a Pull Watch Folder with aswatchfolderadmin
	Watch Folder Service Configuration
	Watch Folder JSON Configuration File Reference
	Managing Watch Folders with aswatchfolderadmin
	Configuring Linux for Many Watch Folders
	Creating a Push Watch Folder with the API
	Creating a Pull Watch Folder with the API
	Managing Watch Folders with the API
	Configuring Custom Watch Folder Permissions Policies
	Updating the Docroot or Restriction of a Running Watch Folder Service

	The Aspera Watch Service
	Starting Aspera Watch Services and Creating Watches
	Watch Service Configuration
	Setting Custom Watch Scan Periods
	Managing Watch Subscriptions
	Transferring and Deleting Files with the Aspera Watch Service

	Aspera Sync
	Introduction
	Overview
	Synchronization and Direction Modes
	Aspera Sync FAQ

	Aspera Sync Set Up
	Configuring Aspera Sync Endpoints
	Viewing Aspera Sync Transfers in the Aspera GUI
	Symbolic Link Handling
	The Aspera Sync Database

	Running async
	Composing an Async Session
	async Command Reference
	Examples of Async Commands and Output
	Include and Exclude Filtering Rules
	Filtering Examples
	Bidirectional Example
	Synchronizing with AWS S3 Storage
	Examples of Sync to or from S3

	Writing Custom Metadata for Objects in Object Storage
	Aspera Sync with Basic Token Authorization

	Using the Aspera Watch Service with Aspera Sync
	Starting Aspera Watch Services and Creating Watches
	Starting the Aspera Watch Service
	Watch Service Configuration
	Aspera Sync with Aspera Watch Service Session Examples

	Aspera Sync Monitoring and Logging
	asyncadmin Command-Line Options
	Logging

	Troubleshooting Aspera Sync
	Troubleshooting General Aspera Sync Errors
	Troubleshooting Continuous Aspera Sync Errors
	Resolving Bidirectional Aspera Sync File Conflicts

	Appendix
	Hardlinks
	Creating SSH Keys
	rsync vs. async Uni-directional Example

	Configuring for Other Aspera Products
	Set up HST Server for Node API
	Overview: Aspera Node API
	Node API Setup
	Node Admin Tool
	Configuring the IBM Aspera NodeD Service
	Securing the Node Service Behind a Proxy
	Backing up and Restoring the Node User Database Records
	Backing up and Restoring Access Keys (Tenant Data)
	Backing up and Restoring a Node Database
	Setting up SSL for your Nodes
	Installing SSL Certificates

	Authentication and Authorization
	Introduction to Aspera Authentication and Authorization
	Require Token Authorization: Set from the Command Line
	Transfer Token Creation (Node API)
	Transfer Token Generation (astokengen)
	Access Key Authentication
	Basic Tokens
	Bearer Tokens

	Asconfigurator Reference
	The asconfigurator Utility
	Syntax and Usage
	Examples
	Reading Output
	User, Group and Default Configurations
	Trunk (Vlink) Configurations
	Central Server Configurations
	HTTP Server Configurations
	Database Configurations
	Server Configurations
	Client Configurations

	Troubleshooting
	Clients Can't Establish Connection
	Error: Session Timeout During Ascp Transfers
	Node API Transfers of Many Small Files Fails
	Logs Overwritten Before Transfer Completes
	Disabling SELinux

	Appendix
	Restarting Aspera Services
	Docroot vs. File Restriction
	Aspera Ecosystem Security Best Practices
	Securing the Systems that Run Aspera Software
	HSTS

	Securing the Aspera Applications
	HSTS

	Securing Content in your Workflow

	Testing and Optimizing Transfer Performance
	Create an SSL Certificate (Apache)
	Enable SSL (Apache)
	Log Files
	HST Server Web UI (Deprecated)
	Configuring the Apache Server to Host the HST Server Web UI
	Configuring your Web UI Settings
	Customize the Appearance of the Web UI
	Testing the Web UI
	Configuring HTTP and HTTPS Fallback

	Product Limitations

	Technical Support
	Legal Notice

